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Preface 

The thesis is based on three articles, all of which address questions regarding systematic reviewing 

and meta-analysis. In all, the thesis is composed of four chapters, whereto the three articles are 

enclosed in Chapters II to IV, making up the core of the thesis. The first chapter of the thesis aims 

to situate the three articles by introducing the overall Ph.D. project and by giving an overview of 

the main research questions that have driven the three articles and how these are related. Before 

the chapters, a brief summary of the three articles and their main findings and scientific contribu-

tions is provided both in English and Danish. 
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English Summary 

This thesis aims to conduct a state-of-the-art systematic review and contribute to the improvement 

of systematic reviewing and meta-analysis techniques in education and beyond. The thesis is com-

posed of three articles that each makes methodological contributions to educational research as 

well as to systematic reviewing and statistical meta-analysis. The thesis has two overall aims. First, 

it seeks to remedy two frequently used and error-prone features of systematic reviews in education, 

i.e., the use of narrative synthesis of quantitative research literature and meta-analysis of studies

contributing multiple effect sizes not sufficiently accounting for statistical dependencies among 

effect sizes coming from the same study. Among other things, the former issue has repeatedly been 

shown to produce conclusions driven by the preconceptions of the reviewers, while the latter 

prompts systematic reviews to yield too many false-positive results. To guard against these issues, 

the dissertation aims to provide a use case both for how to avoid narrative syntheses and tackle 

common reasons used to justify narrative synthesis and for how to adequately account for depend-

ent effect sizes in meta-analysis. Second, it aims to expand the ballpark of statistical methods to 

handle dependent effect sizes by providing new power approximation formulas for the most com-

mon models used to handle dependency among effect sizes. These are the correlated hierarchical 

effects (CE), the multi-level meta-analysis (MLMA), and correlated-hierarchical effects (CHE) 

models. These new statistical power analyses can, for example, be utilized at the planning stage of 

systematic reviews in order to investigate if a review will be able to detect the smallest effect size 

of practical concern with a given certainty.  

Throughout, the thesis complies with open science standards so that applied researchers, 

by re-using the available codes, can more easily implement accurate meta-analysis in future re-

views and/or test our results. All background materials supporting the thesis can be found on Open 

Science Framework (OSF) and be accessed via https://osf.io/fby7w/, https://osf.io/auj2e/, and 

https://bit.ly/3uuinTz. Moreover, the POMADE (Power for Meta-Analysis of Dependent Effects) 

R package is developed in this thesis to ease the use and accessibility of the newly developed and 

rather complex power approximation formulas. All material related to the package development 

can be found on GitHub at https://github.com/MikkelVembye/POMADE. In the following section, 

the main findings and contributions of each of the enclosed articles are described in more detail.  
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Summary of results and contributions  

Article 1: The Effects of Co-Teaching and Related Collaborative Models of Instruction on Student 

Achievement: A Systematic Review and Meta-Analysis (with Felix Weiss & Bethany H. Bhat, Uni-

versity of Texas at Austin) 

This article [Chapter II] is a large-scale systematic review of the effects of collaborative models 

of instruction on students’ academic achievement, which functions as a use case for how to apply 

cutting-edge meta-analysis techniques. Although the overall focus of the dissertation is on the sta-

tistical conduct and improvement of meta-analysis, the empirical work of this article is also sub-

stantially motivated by educational theories about collaborative models of instruction. In particu-

lar, the article wants to challenge common claims made in the co-teaching literature, saying that 

the literature is only mature for narrative synthesis and asserting that the evidence base supporting 

the effectiveness of co-teaching is scarce. Hereto, we found 128 treatment and control group de-

signed studies in the period from 1984 to 2020 through databases- and snowballing searches. In 

fact, we located more eligible studies within all historical periods previously reviewed. From this 

pool of studies, we excluded 52 studies due to critical risk of bias via Cochrane’s risk of bias 

assessment tools and conducted a meta-analysis of 76 studies, including 96 independent student 

samples and 280 short-term effect sizes, of which 82% were pretest-adjusted. We found a moderate 

statistical significant mean effect size equal to 𝑔̅ = 0.11, 95% CI[0.035, 0.184]. From moderator 

analyses, we found that collaborative instruction generally yields stable, moderate effects on aca-

demic achievement, and we show that the effect does not hinge on any specific two-teacher com-

positions, suggesting an increased potential for the scalability of these collaborative instruction 

interventions. All included models were based on the correlated-hierarchical effects (CHE-RVE) 

working models that combine multi-level meta-analytical modeling with robust variance estima-

tion techniques while accounting for various dependency structures among effect sizes. We also 

found that important factors of effectiveness highlighted in the co-teaching literature did not ex-

plain any substantial variation in effect sizes. Finally, we did not find any clear evidence for pub-

lication bias or small study effects, which was not surprising since more than 80 percent of the 

included studies came from gray literature.  
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Article 2: Power Approximations for Meta-Analysis of Dependent Effect Sizes (with James E. 

Pustejovsky, University of Wisconsin-Madison & Terri D. Pigott, Georgia State University) 

This article [Chapter III] introduces power approximations for tests of the overall average effect 

size from the most common models for handling dependent effect sizes mentioned above. These 

approximations aim to replace previous power approximation in meta-analysis, which was based 

on the assumption of independent effect sizes. In a Monte Carlo simulation, we show that the new 

power formulas can accurately approximate the true power of common meta-analytic models for 

dependent effect sizes when these approximations are based on reliable pilot data. We also show 

that the original method for approximating the power of the overall average effect size in meta-

analysis performs inadequately in terms of predicting the power of models handling dependent 

effect sizes. Finally, the article investigates the Type I error rate and power for several common 

models. Findings show that tests using robust variance estimation provide better Type I error cal-

ibration than tests based on model-based variance estimation. 

Article 3: Conducting Power Analyses for Meta-Analysis of Dependent Effect Sizes: Common 

Guidelines and an Introduction to the POMADE R Package   

While the second article of the thesis concentrated on the statistical accuracy and quality assurance 

of the performance of the newly developed methods, it focuses less on the practical challenges 

encountered by researchers for obtaining the relevant quantities required to implement reliable 

power approximations for meta-analyses involving statistically dependent effect sizes. Therefore, 

this article [Chapter IV] aims to support applied reviewers by making these power approximation 

methods practically accessible. For this purpose, the article develops common guidelines for how 

I/we think power analysis for meta-analysis of dependent effect sizes can be conducted. Further-

more, it introduces the POMADE R package with the purpose of making these methods easily 

applicable in systematic reviews. Specifically, I/we provide R codes for how reviewers can inves-

tigate and illustrate power, the number of studies required to detect a given effect size considered 

to be of practical concern, and the minimum detectable effect size across various plausible data 

and model assumptions as well as with prespecified levels of statistical significance and power. 

Finally, we introduce the traffic light power plot for presenting power analyses across a range of 

plausible scenarios while clearly indicating the exact assumptions made by the reviewers. 
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Dansk resumé 
 

Formålet med denne afhandling er at gennemføre en state-of-the-art systematisk forskningskort-

lægning samt at forbedre nuværende systematiske forskningskortlægnings- og statistiske meta-

analytiske teknikker i pædagogikken og uddannelsesforskningen med videre. Afhandlingen består 

af tre artikler, som hver især skaber metodiske bidrag til pædagogikken og uddannelsesforskningen 

samt systematisk forskningskortlægning og statistisk meta-analyse. Overordnet set har denne af-

handling to hovedformål. For det første søger afhandlingen at udbedre to ofte benyttede og fejlbe-

hæftede metoder i systematisk forskningskortlægning inden for uddannelsesforskningen, dvs. bru-

gen af narrativ syntese til at samle kvantitativ forskningslitteratur samt brugen af statistisk meta-

analyse af studier, som bidrager med flere effektstørrelser, uden at der tages tilstrækkeligt højde 

for den afhængighed, der eksisterer mellem effektstørrelser, som kommer fra det samme studie. I 

forhold til den første problematik er det blandet andet gentagne gange blevet påvist, at dette kan 

føre til konklusioner, som hovedsageligt er drevet af forskeres forudindtagede overbevisninger, 

mens den anden problematik forårsager, at systematiske forskningskortlægninger afkaster for 

mange falske positive resultater.  For at imødegå disse problematikker har afhandlingen til formål 

at skulle fungere som en use case delvis til at vise, hvordan man undgår narrative syntese og over-

kommer de normale argumenter, der bliver brugt som berettigelsesgrundlag for narrativ syntese 

og delvis til at illustrere hvordan afhængige effektstørrelser håndteres korrekt i meta-analyse. For 

det andet har afhandlingen til formål at bidrage med nye metoder til at håndtere afhængige effekt-

størrelser i meta-analyse. Til dette formål præsenterer afhandlingen nye styrke/power udregnings-

formler for de mest udbredte modeller til at håndtere afhængige effektstørrelser. Disse er correlated 

effects (CE), correlated-hierarchical effects (CHE) og multi-level meta-analyse (MLMA) model-

lerne. Disse nye statistiske styrkeanalyser kan eksempelvis benyttes i planlægningsfasen af syste-

matiske forskningskortlægninger til at undersøge, hvorvidt kortlægningen vil være i stand til med 

en vis sikkerhed at kunne finde den mindste effektstørrelse vurderet til at være af praktisk relevans.  

 Afhandlingen følger gennem alle sine dele open science standarder, således at anvendte 

forskere ved at genbruge de tilgængelige koder med større lethed kan implementere adækvat meta-

analyse i fremtidige forskningskortlægning og/eller teste vores resultater. Alle afhandlingens bag-

vedliggende materialer ligger på OSF (Open Science Framework) og kan tilgås via 

https://osf.io/fby7w/, https://osf.io/auj2e/ og https://bit.ly/3uuinTz. Ydermere udvikles POMADE 
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(Power for Meta-Analysis of Dependent Effects) R pakken i denne afhandling, som har til formål 

at øge adgangen til og brugen af de nyudviklede og relativt komplekse styrkeanalyseformler. Alt 

materiale relateret til pakkeudviklingen ligger på GitHub og kan tilgås via https://github.com/Mik-

kelVembye/POMADE. I den følgende del, præsenteres mere detaljeret hovedresultaterne og -bi-

dragene for hver af de indlagte artikler.  

Resumé af resultater og forskningsbidrag 

Artikel 1: Effekterne af co-teaching og relaterede tolærerordninger på elevers faglige præstatio-

ner: Et systematisk review og en meta-analyse (medforfattere Felix Weiss & Bethany H. Bhat, 

University of Texas at Austin)  

Denne artikel [Kapitel II] repræsenterer et stor-skala review af effekter af tolærerordninger på 

elevers faglige evner. Derudover fungerer artiklen som en use case for, hvordan state-of-the-art 

meta-analyse teknikker benyttes. Selvom afhandlingens hovedfokus er på den statistiske udførelse 

og udvikling af meta-analyse, så er det empiriske arbejde i denne artikel ligeledes motiveret af 

substantielle pædagogiske tolærerordningsteorier. Artiklen ønsker specifikt at udfordre to udbredte 

antagelser om, at co-teaching litteraturen kun kan samles via narrativ syntese, og at vidensgrund-

laget for de faglige effekter af tolærerordninger er spinkelt. Hertil fandt vi i alt 128 intervention og 

kontrolgruppe designede studier i perioden 1984-2020 baseret på database- og citationssøgninger. 

Det viste sig endvidere, at vi fandt flere relevante studier inden for alle tidsperioder, som har været 

benyttet i tidligere systematiske reviews angående tolærerordninger. Fra denne mængde af studier 

ekskluderede vi 52 studier, da disse ved hjælp af Cochrane risk of bias værktøjer blev vurderet til 

at indeholde en alvorlig risiko for bias. I alt gennemførte vi en meta-analyse af 76 studier, som 

bestod af 96 uafhængige grupper af elever og 280 effektstørrelser målt maksimalt tre måneder efter 

interventionens ophør. Hertil var 82% af disse effektstørrelser kontrolleret for elevers før-testscore. 

Vi fandt en moderat, statistisk signifikant gennemsnitlige effektstørrelse på 𝑔̅ = 0.11, 95% 

KI[0.035, 0184]. Gennem moderatoranalyser fandt vi, at tolærer-undervisning har stabile moderate 

effekter på elevers faglige præstationer, og vi viser, at effekten ikke knytter sig til nogen specifik 

sammensætning af lærere/voksne, hvilket peger på et øget potentiale i forhold til at kunne udbrede 

disse undervisningsformer på en større skala. Alle anvendte modeller i artiklen baserer sig på cor-

related-hierachical effects (CHE-RVE) arbejdsmodeller, som kombinerer multi-level meta-ana-

lyse modellering med robust varians estimeringsteknikker og samtidig tager højde for flere typer 
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af afhængighedsstrukturer mellem effektstørrelser. Vi fandt ingen tydelige tegn på publikations-

bias eller small study effects, hvilket ikke er overraskende da mere end 80% af de inkluderede 

studier ikke har været formelt udgivet i et videnskabeligt peer-reviewed tidsskrift.  

 

Artikel 2: Styrkeapproksimationer for meta-analyse af afhængige effektstørrelser (medforfattere 

James E. Pustejovsky, University of Wisconsin-Madison & Terri D. Pigott, Georgia State Univer-

sity) 

Denne artikel [Kapitel III] introducerer styrkeapproksimationer for tests af den overordnede gen-

nemsnitlige effektstørrelse for de mest normale modeller til at håndtere afhængige effektstørrelser 

som nævnt ovenfor. Disse approksimationer har til formål at erstatte tidligere styrkeapproksima-

tion for meta-analyse, som var baseret på antagelsen om uafhængighed mellem effektstørrelser. 

Gennem et Monte Carlo simuleringsstudie viser vi, at de nye styrkeudregningsformler kan præcist 

approksimere den sande styrke af alle almene meta-analytiske modeller, der håndterer afhængige 

effektstørrelser, når disse approksimationer bygger på pålidelig pilot data. Vi viser ligeledes, at 

den oprindelige metode til at approksimere styrke for den overordnede gennemsnitlige effektstør-

relse i meta-analyse præsterer statistisk utilstrækkeligt i forhold til at forudse styrken for modeller, 

der håndterer afhængige effektstørrelser. Til sidst undersøger artiklen Type I fejlraten og styrken 

for de mest normale modeller til at håndtere afhængige effektstørrelser. Resultaterne viser i den 

forbindelse, at tests som benytter robust varians estimering kontrollerer Type I fejlraten bedre 

sammenlignet med tests, som baserer sig på modelbaseret varians estimering.   

 

Artikel 3: Udførelse af styrkeanalyser for meta-analyse af afhængige effektstørrelser: Almene 

guidelines og en introduktion til POMADE R pakken.  

Mens den anden artikel i afhandlingen koncentrerer sig om den statistiske nøjagtighed og kvali-

tetssikring af de nyudviklede metoder, så fokuserer artiklen i mindre grad på de praktiske udfor-

dringer, som forskere vil møde i forhold til at skulle skaffe de informationer og parametre, som er 

nødvendige for at kunne implementere pålidelige styrkeapproksimationer i meta-analyse, der in-

volverer statistisk afhængige effektstørrelser. Derfor har denne artikel [Kapitel IV] til formål at 

støtte anvendte reviewere ved at gøre styrkeapproksimationerne mere tilgængelige i praksis. Til 

dette formål udvikles der i artiklen almene guidelines, for hvordan jeg/vi tænker, at styrkeanalyser 
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for meta-analyse af afhængige effektstørrelser kan blive udført. Ydermere introduceres POMADE 

R pakken, som har til formål at gøre disse metoder mere anvendelige i systematiske reviews. Spe-

cifikt fremsætter artiklen R koder, som understøtter reviewere i forhold til at undersøge og illu-

strere styrke, antallet af studier krævet for at kunne finde en given effektstørrelse vurderet til at 

være af praktisk relevans og den mindst mulige detekterbare effektstørrelse på tværs af plausible 

antagelser om ens data og model samt med præspecificerede niveauer for den statistiske signifi-

kans og styrke. Til sidst introducerer vi the traffic light power plot, som har til formål at kunne 

præsentere styrkeanalyser på tværs af en række plausible scenarier, samtidig med at plottet tydeligt 

indikerer de eksakte antagelser fremført af reviewerne.  
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Chapter I

Overview Article 

Mikkel H. Vembye 



Chapter I: Overview Article 

Abstract 

This chapter gives an overview of the dissertation as required by the Graduate School of Arts, 

Aarhus University, to fulfill a Ph.D. degree from an article-based Ph.D. dissertation (cf. Aahus 

University, 2010, p. 12). The chapter has several aims. First, it presents the overall project of the 

thesis and relates it to the scientific fields of systematic reviewing and meta-analysis. By doing so, 

it also demonstrates how the thesis aims to provide a means for overcoming a range of issues 

commonly encountered in systematic reviews and meta-analyses in education and the social sci-

ences. Second, it explicates the overall research questions that have driven the Ph.D. project and 

shows the relationship between the research questions and the three enclosed research articles. 

Third, it presents the theory and methods that the Ph.D. project employed in order to make a sci-

entific contribution. Forth, it shows how open science and open data policies have played a key 

role in ensuring the credibility of the work presented in this thesis. This should also provide codes 

to applied reviewers so that these can be re-used, or at least inspire, future reviews and meta-

analyses in education and beyond. Fifth and finally, the article gives a brief summary and discus-

sion of the achieved results and contributions of each of the enclosed research articles.   
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Chapter I: Overview Article 

1. Introduction 

Systematic reviews,1,2 i.e., “review[s] of existing research using explicit, accountable rigorous re-

search methods” (Gough et al., 2017, p. 4), and meta-analyses,3 i.e., “the quantitative procedures 

that (…) statistically combine the results of studies” (Cooper & Hedges, 2019, p. 7), are critical 

tools for guiding developments of educational theory and educational decision-making for policy 

and practice (Campbell Collaboration, 2019; Gough et al., 2017; Karseth, Sivesind, & Gita, 2022; 

White, 2022; WWC, 2020). For that reason, systematic reviews and meta-analyses have substan-

tially proliferated over the last three decades in the social sciences, including education (Ahn, 

Ames, & Myers, 2012; Cooper, Hedges, & Valentine, 2019; Pigott, 2012; Polanin, 2013; Williams, 

2012). In education, in particular, systematic reviewing and meta-analysis have gained special at-

traction and trust since this type of research has been expected to link research, practice, and policy 

closer together (Hargreaves, 1996; Hattie, 2009; OECD, 2004). In fact, it has been the goal for 

many educational researchers that meta-analyses should become a standard practice in educational 

research (Campbell Collaboration, 2019; Hargreaves, 1996; KSU, 2021; WWC, 2022), moving 

toward the same systematic approach to the production of causal knowledge as in the field of 

medicine (Higgins et al., 2019). Given the increased dissemination of and the immense reliance 

on systematic reviews and meta-analyses for policy and practice decisions in education, it is all-

important to understand and scrutinize the advantages, boundaries, and pitfalls of this type of re-

search and, not least, ensure its validity (Polanin, 2013). Otherwise, researchers risk disseminating 

error-prone and potentially misleading guidelines for policy, practice, and research. Although nu-

merous guidelines have been developed for how to conduct state-of-the-art reviews and meta-

analyses in education and the social sciences (Campbell Collaboration, 2019; Cooper, 2015; 

Moher, Liberati, Tetzlaff, Altman, & Group, 2009; Pigott & Polanin, 2019; Siddaway, Wood, & 

Hedges, 2019; WWC, 2020), it is still widespread to find systematic reviews and meta-analyses 

 
1 Also known as research syntheses similarly defined as “integrating past research by drawing overall conclusions 

(generalizations) from many separate investigations that address identical or related hypotheses” (Cooper, 2015, p. 7).  
2 When I use the term review in this article, it refers to this definition of a systematic review.   
3 The terms systematic review and meta-analysis are often used interchangeably. However, these conceptions are 

clearly distinguished in the present thesis since it is possible to conduct systematic reviews without using meta-analysis 

as the synthesis method and contrarily it is possible to conduct meta-analysis of a body of literature that has not been 

systematically gathered.  
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not following highest and best practice standards. This is also the case in prestigious journals4 for 

educational research, such as Review of Educational Research (Tipton et al., 2019b), Educational 

Research Review and Review of Research in Education (Ahn et al., 2012), as well as in evidence 

institutions such as Campbell Collaboration (Wang et al., 2021). Ultimately, this risks compromis-

ing the accuracy of the causal inferences and the credibility of this type of (high-stake) research, 

which in the end might promote error-prone decision-making in policy and practice.    

On these grounds, one of the primary aims of the present thesis is to create knowledge that 

helps to overcome some of the most widespread and common issues encountered in educational 

and social science reviews. By conducting a systematic review including state-of-the-art meta-

analysis techniques, the thesis aims to provide a use case that illustrates the strength of meta-anal-

ysis methods over narrative synthesis5 for amalgamating quantitative research literature and that 

practically demonstrates how to handle dependencies among effect sizes adequately when studies 

report multiple eligible results. One of the reasons why reviewers should avoid using narrative 

synthesis of quantitative literature is that it has repeatedly been shown to be subject to a number 

of fundamental deficits and biases. For example, that conclusions based on narrative synthesis are 

vulnerable to being driven by the researchers’ preconception of the content area under review 

(Cooper, 2015). On the other hand, dependencies among effect sizes are frequently ignored in 

meta-analyses (Ahn et al., 2012; Tipton et al., 2019b), prompting reviews to yield too many false-

positive results. I elaborate more thoroughly on these issues in the next section. Although depend-

ence among effect sizes is often improperly treated in meta-analysis in education, authors of sys-

tematic reviews are not always the ones to blame simply because of lacking methods for handling 

dependent effect sizes in all parts of systematic reviews and meta-analyses. To exemplify, re-

searchers have previously been compelled to use power approximation based on the assumption 

of independent effect sizes (Hedges & Pigott, 2001, 2004) if they wanted to understand the 

4 Previously, it was also common to find systematic reviews and meta-analyses in Psychological Bulletin that treated 

dependent effect sizes inadequately (Tipton et al., 2019b). However, when looking through reviews concerning edu-

cational topics in issues published in 2021, it is not possible to find any reviews not using proper methods to handle 

dependencies among effect sizes, indicating a substantial improvement in this journal.  
5 Defined as “a method to summarize [results] by using words” (Melendez‐Torres et al., 2017, p. 109). Sometimes 

also defined as ”narrative summaries” (Littell, 2008) or ”thematic summaries” (Thomas et al., 2017). Narrative syn-

thesis should not be confused with narrative reviews. A narrative review refers to a review based on a convenient 

sample of studies that is often based on the previous knowledge of the reviewer(s). However, narrative synthesis 

specifically refers to the method used to amalgamate results across studies independently of whether these are selected 

systematically or conveniently (Popay et al., 2006, p. 5).  
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approximate statistical power of their more complex model for handling dependent effect sizes at 

the planning stage of the review. Furthermore, until recently, researchers have only had limited 

software tools to support the conduct of power analysis for meta-analysis (Harrer et al., 2019). 

Thus, the thesis aims to remedy this apparent deficit of power analysis for meta-analysis by devel-

oping and quality assuring new power approximation formulas for the most common meta-analysis 

models that accurately handle dependence among effect sizes, i.e., the Multi-Level Meta-Analysis 

(MLMA; Van den Noortgate et al., 2013), the Correlated Effects (CE; Hedges et al., 2010b), and 

the Correlated-Hierarchical Effects (CHE; Pustejovsky & Tipton, 2021) models. Hereto, the thesis 

presents the first version of the POMADE (Power for Meta-Analysis of Dependent Effects) R 

package that aims to ease the usability and accessibility of these rather complex power approxi-

mations.  

Albeit the thesis might seem to make dispersed contributions to the fields of education, 

systematic reviewing, and meta-analysis alike, it has been driven by three overall and closely in-

terrelated research questions. In the following sections, I will present the fine-grained connections 

between the three research articles of the thesis and the connections between their inherent research 

questions.   

 

Main research questions  

Throughout my dissertation work, a number of minor research questions have continuously suf-

ficed, but three overarching and interrelated methodological research questions can be said to have 

been the main drivers of my work. These are: 

 

1) How to overcome common deficits and issues used to justify the use of narrative synthesis 

of quantitative research? 

2) How to conduct state-of-the-art meta-analysis in education? 

3) How to improve state-of-the-art methods to handle dependent effect sizes in education and 

beyond? 

 

This is not to say that theoretical educational research questions have not played a key role in the 

dissertation, but these are mainly subordinated to the second research question. Essentially, it is 

paramount to emphasize that it is not possible to conduct a high-quality systematic review, and 
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thereby answer the second research question, without a profound insight into the educational the-

ories about the causal connections under review (Pigott, 2012). I elaborate more thoroughly on 

how educational theory has guided our review in the below Theory Section.  

How the research questions evolved 

The original idea leading to the first research question of the thesis evolved from my previous 

exploration and examination of the deficits related to the conduct of narrative synthesis of large 

bodies of literature based on quantitative analyses (Vembye & Jensen, 2022). We previously 

showed that narrative syntheses tend predominantly to produce simplistic and law-like causal 

statements about what works due to the narrow focus on statistical significance and lacking oppor-

tunities for rigorous testing of moderating effects across studies.  

The second question appeared through the investigation of the first research question. From 

these investigations, it rapidly became apparent that the aim of overcoming the shortcomings of 

narrative synthesis was one of the main motivations for the development of meta-analysis tech-

niques back in the 1970s as a response to the at the time common use of narrative reviews and 

syntheses (Cooper, 2015; Glass, 2000; Hedges & Olkin, 1985; Shadish & Lecy, 2015). Therefore, 

I started investigating how and if meta-analysis could provide a means to remedy common deficits 

and justifications of narrative syntheses.  

Although it rapidly became clear that meta-analytical techniques could solve most of the 

shortcomings embedded in narrative reviews and syntheses, it was also clear from my exploration 

of meta-analytical methods that, as with every scientific method, they are not without deficits and 

pitfalls (Borenstein, 2019; Hedges et al., 2010b; Van den Noortgate et al., 2013). It was especially 

clear that it is still widespread to find meta-analyses that do not follow best practice methods for 

meta-analysis of social science research (Ahn et al., 2012; Littell, 2008). In particular, it is common 

to find lacking use of adequate methods for handling dependencies among effect sizes coming 

from the same study (Tipton et al., 2019b), which in turn compromises the accuracy of the derived 

inferences and results. On this basis, I got interested in understanding how to conduct state-of-the-

art meta-analysis.  

From my investigation of how to conduct a state-of-the-art meta-analysis in education, I 

found certain boundaries for methods to handle dependent effect sizes, leading to my interest in 
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understanding how new methods could be developed to adequately handle dependencies among 

effect sizes in meta-analysis. The boundaries of meta-analysis of dependent effect sizes appeared 

at first when I began to calculate a priori power for the complex models we intended to use in our 

planned review. At that point, these approximations were only available under the assumptions of 

independence among effect sizes. Hereto, it was obvious that these approximations were problem-

atic to use for approximating the statistical power of the more complex models handling dependent 

effect sizes. Therefore, I began exploring how to develop new techniques for power approximation 

for meta-analysis of dependent effect sizes to improve the ballpark of methods to handle dependent 

effect sizes in meta-analysis.  

 

Relations between dissertation chapters (articles) and research questions 

The first article [Chapter II] of the thesis represents a systematic review and meta-analysis of the 

effects of co-teaching and related collaborative models of instruction on student achievement. Be-

sides the aim of investigating the theoretical and substantial issues related to collaborative models 

of instruction, the underlining aim of the review is to function as a use case for answering the first 

and the second research question of the thesis. Particularly, the article aims to answer the first 

research question by replicating6 a previous systematic review conducted by the Danish Clearing-

house for Educational Research (henceforth DCER), in which study results of the effects of co-

teaching and teacher assistants interventions were combined via narrative synthesis techniques 

(Dyssegaard & Larsen, 2013). The underlying intention of the article, therefore, is to show the 

difference between narrative synthesis and meta-analysis. In particular, it aims to show the ad-

vantage of doing meta-analysis relative to narrative synthesis of quantitative research in terms of 

demonstrating that meta-analysis can address and answer a larger number of substantial questions 

that are unreachable for narrative synthesis. Moreover, the article aims to show how to overcome 

common justifications for the use of narrative synthesis of quantitative literature (Campbell et al., 

2019; Melendez‐Torres et al., 2017; Petticrew & Roberts, 2008; Popay et al., 2006). To give a 

brief and typical example of why reviewers opt not to use meta-analysis of quantitative research 

(Ioannidis, Patsopoulos, & Rothstein, 2008), DCER argues (Dyssegaard & Larsen, 2013, p. 12) 

 
6 Replication is defined as follows: “Replicability concerns whether another investigator can obtain the same results 

when they obtain their own (new) data by attempting to repeat the study that was carried out by the first investigator” 

(Hedges, 2019, p. 4). 
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that meta-analysis can only be conducted when studies are based on randomized controlled trials 

(RCTs). With the first article of the thesis, we implicitly want to show, among other things, that 

heterogeneity (in research designs) is not necessarily a valid reason for not conducting meta-anal-

ysis since this excludes the opportunity for investigating and creating an understanding of differ-

ential (design) effects. In this regard, we also demonstrate how biases of including non-randomized 

studies can be reduced through the use of thorough risk of bias assessments, pretest-adjusted effect 

size calculation, and statistical modeling techniques. I elaborate in more detail on these matters in 

Section Two of this overview article.  

In order to answer the second research question of the thesis, the first article aims to provide 

a use case for how to deploy state-of-the-art methods to handle dependent effect sizes also in cases 

when various dependency structures are simultaneously present in the review data. This is the case 

when the data both contain studies reporting multiple outcomes from the same sample (also known 

as the correlated effects dependency structure) and studies reporting multiple outcomes from non-

overlapping samples (also known as the hierarchical effects dependency structure). Until recently 

(Pustejovsky & Tipton, 2021), applied reviewers have been compelled to either model a hierar-

chical or a correlated dependence structure, but in the first article, we aim to demonstrate how to 

use the newly developed correlated-hierarchical effects models (CHE-RVE) that account for both 

types of dependence structures while combining MLMA (Van den Noortgate et al., 2013, 2014) 

and robust variance estimation (RVE; Hedges et al., 2010b; Tipton & Pustejovsky, 2015). At the 

current stage of the methodological meta-analysis literature, I/we considered this approach to rep-

resent a state-of-the-art of meta-analysis technique because the CHE model most adequately cap-

tures the true dependency structures encountered in reviews in education, including our review.  

The second and the third article [Chapters III and IV] of the dissertation are both centered 

around answering the third research question by developing and quality testing new power approx-

imation formulas for meta-analysis of dependent effect sizes. Through a Monte Carlo simulation, 

the second article also investigates which meta-analytical models are insufficient with regard to 

their Type I error calibration. In line with previous research on the topic (Moeyaert et al., 2017), 

the second article shows that averaging effect sizes from the same studies to avoid dependence 

among study-level effect sizes does not control the nominal Type I error rate when less than 60 

studies are available for meta-analysis. Moreover, the article demonstrates that original suggested 
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power approximation for meta-analysis (Hedges & Pigott, 2001) is poorly suited for approximat-

ing the power of meta-analytical models based on study-mean effect sizes, albeit they are statisti-

cally independent.  

A part of improving state-of-the-art meta-analytical methods is also to ensure that applied 

reviewers have sufficient guidelines and all necessary tools to apply these methods. Therefore, the 

third article of the thesis both revolves around developing common guidelines for how to conduct 

power analyses for meta-analysis of dependent effect sizes and around presenting the first version 

of the POMADE (Power for Meta-Analysis of Dependent Effects) R package (R Core Team, 

2022), which aims to ease the use of these rather complex power approximations. Furthermore, 

the third article of the thesis presents R functions for obtaining the minimum detectable effect size 

and the number of studies required to detect a given effect size considered to be of smallest prac-

tical interest under assumed conditions of the data and model as well as with prespecified levels 

of statistical power (𝛽) and significance (𝛼). 

 

2. Overcoming Common Issues in Systematic Reviews and Meta-Analyses 

In this section, I outline in more detail typical shortcomings encountered in educational and social 

science reviews. Hereto, I present how the thesis aims to contribute to overcoming these issues 

and, thereby, how the thesis aims to answer the three main research questions. Along with this 

presentation, I also reflect on the limitations of the suggested alternative solutions. It is obvious 

that no method is perfect (Borenstein, 2019), but I will carefully argue that some methods are 

indeed better suited to reach certain aims than others (Murnane & Willett, 2010). 

 

Handling deficits of narrative synthesis of quantitative research 

Narrative synthesis7 is seemingly still one of the most widespread methods used to combine results 

across studies included in systematic reviews (Thomas, O’Mara-Eves, Harden, & Newman, 2017; 

Valentine et al., 2017), and it is common to find narrative syntheses of large amounts of quantita-

tive data (Campbell et al., 2019; Melendez‐Torres et al., 2017), also in education (Dyssegaard & 

Larsen, 2013). In fact, multiple clearinghouses in education have been or are built entirely or partly 

 
7 i.e., a “synthesis of findings from multiple studies that relies primarily on the use of words and text to summarise 

and explain the findings of the synthesis” (Popay et al., 2006, p. 5). 
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on this approach toward systematic reviewing (DCU, 2013; EPPI-Centre, 2010; KSU, 2021; 

Valentine et al., 2017). However, narrative synthesis techniques have ever since the development 

of statistical meta-analysis been shown to be suspect in producing error-prone results (Cooper, 

2015; Hedges & Olkin, 1985; Lipsey, 2007; Littell, 2008). In the following section, I will discuss 

some of the most grievous problems of doing narrative synthesis of quantitative research. I am 

taking a critical stance towards narrative synthesis here because these critiques have played a vital 

role first in my understanding of common and practical challenges in systematic reviewing and 

second in my understanding of how meta-analytical techniques can overcome most of them. In 

this regard, it is all-important to emphasize that criticizing narrative synthesis is neither to say that 

narrative synthesis in all circumstances malfunctions nor that meta-analysis functions without nar-

ratives. My incoming critique is solely directed toward narrative synthesis of quantitative research 

studies (Campbell et al., 2019; Melendez‐Torres et al., 2017; Petticrew & Roberts, 2008; Popay et 

al., 2006). Moreover, the critique mainly concerns systematic reviews that examine the effective-

ness of given interventions and follow rigorous methods in all parts surrounding the narrative lit-

erature syntheses. Although the critique is certainly relevant for other types of reviews, such as 

narrative reviews, these are not of my concern because they contain other shortcomings that fall 

outside the scope of this thesis. To further support my argumentation, I would also like to stress 

that narrative synthesis can, obviously, provide a pivotal means for combining findings of quali-

tative studies to create qualitative understandings and theorizations of why given interventions 

work or fail to work properly. In other words, narrative syntheses can be important for theoretical 

developments in the given content area of interest (for a great example, see Scruggs et al., 2007). 

Needless to say, it still, however, requires rigorous procedures to avoid running into the below-

presented shortcomings of narrative synthesis (Campbell et al., 2018). On the other hand, it is also 

important to emphasize, as highlighted by Thomas et al. (2017, p. 185), that it is to some extent 

artificial to make bold distinctions between narrative synthesis and meta-analysis since “all syn-

thesis involve narrative[s] of some kind.” As will be shown in the below Theory Section, all high-

quality meta-analyses hinge on deep theoretical narratives of why certain effects are expected to 

or not to appear and/or why they vary or not across scientifically relevant factors. That said, nar-

rative syntheses of quantitative studies are subject to numerous pitfalls and deficits that meta-

analysis is intended to remedy. I will go through three major deficits of narrative synthesis of 

quantitative literature and show how the thesis aims to come around these issues via statistical 

24



Chapter I: Overview Article 

meta-analysis. Along with these expositions, common critiques against meta-analysis are dis-

cussed as well. 

 

Cognitive algebra and how to avoid it with meta-analysis 

One of the most widespread and persistent critiques against narrative synthesis is that it depends 

on cognitive algebra, i.e., that the weighting schemes and rules used to combine findings “are 

rarely known as to anyone but the synthesists themselves” (Borenstein et al., 2009; Campbell et 

al., 2019; Cooper, 2015, p. 9). In effect, it has been shown that cognitive algebra in narrative syn-

thesis frequently leads to confirmation bias, where researchers “unintentionally (…) seek infor-

mation that supports a hypothesis, give preferential treatment to evidence that confirms existing 

beliefs, and dismiss evidence to the contrary” (Littell, 2008). This further means that narrative 

reviewers will often have the tendency to predominantly place more weight on studies conducted 

by themselves or their colleagues (Cooper, 2015; Glass, 1976, 2000). Consequently, it will be 

unlikely that other scholars will be able to reproduce the same conclusion even under the same 

circumstance (Valentine et al., 2010). Even the best educational researchers will likely fall short 

of keeping a valid overview of the overall synthesis conclusions not driven by arbitrarily weighting 

rules as soon as the number of studies and reported results increases. It can, therefore, be expected 

that the deficit of narrative synthesis increases as a function of the number of included studies and 

the number of reported results from each study. Thus, the critique is also to say that without sta-

tistical methods, “[t]he accumulated findings of (…) studies should be regarded as complex data 

points, no more comprehensible without the full use of statistical analysis than hundreds of data 

points in a single study” (Glass in Cooper, 2015, p. 13).  

 As a justification for narrative syntheses of quantitative results, it is often claimed that they 

are valid when they include only a few studies (data points) (see Table 1 in Ioannidis, Patsopoulos, 

& Rothstein, 2008, p. 1413; Valentine et al., 2017). However, even with a small number of studies, 

it is easy to imagine in social science reviews that it might be an insurmountable task to reach 

accurate conclusions from narrative synthesis, particularly when studies report multiple eligible 

outcomes. To give an example from the review of the thesis, four studies yielded a total of 70 

effect sizes. Even with only four studies, it would require an extraordinary cognitive capacity to 

make reliable conclusions about the connection among so many effect sizes, not to mention how 

the effects vary and how to adequately account for the dependencies among the effect sizes coming 
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from the same studies. In such cases, I will argue in line with Valentine et al. (2010, p. 241) that 

meta-analysis is more appropriate, “[n]ot because it is ideal but rather because given the needs for 

a conclusion, it is a better analysis strategy than the alternatives.” Alternatively, as we suggest in 

the third article of the thesis, researchers should consider if a synthesis is at all necessary when 

only having a few studies and almost no power to find the effects of practical concerns. Hereto, it 

might be better to ask for more evidence and use alternative techniques not involving any type of 

synthesis (see suggestions in McKenzie & Brennan, 2019 & Valentine et al., 2010). 

Although weighting schemes might be used obscurely in narrative synthesis of quantitative 

studies, it is also common to find systematic reviews in education not using any weighting scheme 

across the included studies. Thus, all study results are taken at face value (Lipsey, 2007), inde-

pendently of the study sample size and other relevant features, such as the fidelity of the interven-

tion, etc. (see, e.g., systematic reviews conducted by DCU, 2013; DPU, 2022).8 This issue becomes 

particularly problematic when narrative reviewers bear their evidence on statistical significance, 

as is common in narrative synthesis (Vembye & Jensen, 2022). Say, for instance, that one study 

with a sample size of 500 students yields a statistically significant result, and one study with a 

sample size of 200 students yields a non-statistically significant result, everything else being equal. 

Taken at face value, this would be considered as evidence supporting the conclusion of a “failure 

to replicate” (Hedges & Olkin, 1985). Thereby narrative reviewers would likely conclude that the 

evidence for the effectiveness of the given intervention is ambiguous when they, in fact, just see 

an underpowered study to detect the true effect. As pointed out by Borenstein et al. (2010, p. 13), 

it gets “[e]ven worse, when the significant study was performed in one type of sample and the 

nonsignificant study was performed in another type of sample, researchers would sometimes in-

terpret this difference as meaning that the effect existed in one population but not the other.” As 

these examples indicate, using statistical significance as the main evidence for assessing the effec-

tiveness of educational interventions sets out unrealistic requirements for fair effectiveness judg-

ments in education since “[e]ven under conditions of high power (.80), the probability of both 

studies rejecting a false null hypothesis is only .64. Both studies would have to be conducted under 

conditions of extraordinary statistical power (.975) for there to be a 95% chance that they would 

both correctly result in a rejection of a false null hypothesis” (Valentine et al., 2010, p. 240). The 

 
8
 Note that many previous reviews of collaborative models of instruction have been subject to these critiques as well 

(see Supplementary Table S1 in Chapter II). 
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same issues are embedded in the more systematic use of vote counting (Hedges & Olkin, 1980, 

1985). Generally, methods based on amalgamating statistically significant results have been shown 

to produce overly pessimistic and conservative results since educational intervention studies are 

frequently underpowered. Most often, a majority of studies will yield insignificant results, which 

will lead many researchers to conclude that the evidence decisively shows that there is no effect 

of the given intervention. This is also why Borenstein et al. (2009, p. 14) stress that “doing arith-

metic with words (…) when the words are based on p-values (…) are the wrong words. Hereto, it 

is also important to remember that absence of evidence is not evidence of absence (Altman & 

Bland, 1995; Senn, 2009), meaning that the absence of statistical significance does not necessarily 

imply that a study found no effect of practical importance. 

  

Weighting scheme used in the thesis 

To overcome the above-mentioned issues related to cognitive algebra and wrong narratives about 

patterns of p values when taken at face value, the first article of the thesis draws on meta-analytical 

techniques to synthesize results across and within studies. Among other things, an advantage of 

using meta-analysis is that it ensures transparent, albeit complex, weighting schemes that can be 

reproduced. To give an example of the weights used and attached to each study in our review, I 

will present the CHE model weights we used to estimate the overall average effect size. For an 

overview of the weighting schemes used for some of the more complex meta-regression models 

used in the thesis, see Pustejovsky (2020) and the Supplementary Material of Pustejovsky & Tip-

ton (2021). 

To concisely explain this procedure, assume that we have a collection of 𝐽 studies, each 

reporting 𝑘𝑗 ≥ 1 effect size estimates. Then let 𝑇𝑖𝑗 be effect size estimate 𝑖 from study 𝑗 with a 

corresponding sample error 𝜎𝑖𝑗, for 𝑖 = 1, … , 𝑘𝑗  and 𝑗 = 1, … , 𝐽. In the model we used in the thesis, 

we assumed, as is common in meta-analysis, that 𝑇𝑖𝑗 is an unbiased estimate of the effect size 

parameter 𝜃𝑖𝑗 and that 𝜎𝑖𝑗 is fixed and known. These assumptions can be expressed as 

 

 𝑇𝑖𝑗 = 𝜃𝑖𝑗 + 𝑒𝑖𝑗 (1) 
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where 𝑒𝑖𝑗 = 𝑇𝑖𝑗 − 𝜃𝑖𝑗  is the sampling error, with E(𝑒𝑖𝑗) = 0 and Var(𝑒𝑖𝑗) = 𝑠𝑖𝑗
2 . We assumed

across all models that effect sizes coming from different studies were uncorrelated, so 

cor(𝑒ℎ𝑗, 𝑒𝑖𝑙) = 0 when 𝑗 ≠ 𝑙.  

Since we had more than 55 studies reporting multiple results with various dependency 

structures9 and wanted to synthesize studies across various interventions and student populations, 

we used a model encompassing random effects, both capturing between-study and within-study 

heterogeneity to estimate the overall average effect size. Hierarchically, the model can be written 

as (Pustejovsky, 2020)  

𝑇𝑖𝑗 =  𝜃𝑗 +  𝑣𝑖𝑗 + 𝑒𝑖𝑗 

𝜃𝑗 = 𝜇 + 𝑢𝑗   
(2) 

where 𝜃𝑗  represents the average effect size parameter of the 𝑗th study, i.e., 𝜃𝑗 =
1

𝑘𝑗
∑ 𝑇𝑖𝑗

𝑘𝑗

𝑖=1
. 𝜇 is the 

overall average effect size, 𝑢𝑗  is the between-study error with Var(𝑢𝑗) = 𝜏2 and 𝑣𝑖𝑗 is the within-

study error with Var(𝑣𝑖𝑗) =  𝜔2. 𝑒𝑖𝑗 = 𝑇𝑖𝑗 − 𝜃𝑖𝑗 is the sampling error, with 𝐸(𝑒𝑖𝑗) = 0 and

Var(𝑒𝑖𝑗) = 𝜎𝑖𝑗
2 . In this model, we made the simplifying assumption that sample variance estimates 

from the same study were equal so that 𝜎𝑗
2 =

1

𝑘𝑗
∑ 𝜎𝑖𝑗

2𝑘𝑗

𝑖=1
. We also assumed that there was a constant 

sample correlation, 𝜌, between effect size 𝑖 and 𝑚 for 𝑖, 𝑚 = 1, … , 𝑘𝑗  and 𝑗 = 1, … , 𝐽. Thus, 

Cov(𝑒𝑖𝑗, 𝑒𝑚𝑗) = 𝜌√𝜎𝑖𝑗
2 𝜎𝑚𝑗

2 . From this model, the overall average effect size can be estimated as

𝜇̂ =
1

𝑊
∑ 𝑤𝑗𝜃𝑗 ,

𝐽

𝑗=1

 where 𝑊 = ∑ 𝑤𝑗

𝐽

𝑗=1

 

when the CHE model is correctly specified, then 

Var(𝜇̂) ≈
1

𝑊

9 I will return to this issue in later sections. 
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The weight, 𝑤, attached to study 𝑗 for this model is given by 

 

 

𝑤𝑗 =
1

𝜏2 +
1
𝑘𝑗

(𝜔2 + (𝑘𝑗 − 1)𝜌𝜎𝑗
2 + 𝜎𝑗

2)
 

 

(3) 

and the weight, 𝑤, attached to effect size 𝑖 in study 𝑗 is given by  

 

 𝑤𝑖𝑗 =
1

𝑘𝑗𝜏̂2 +  𝜔̂2 + (𝑘𝑗 − 1)𝜌𝜎𝑗
2 +  𝜎𝑗

2
 (4) 

 

Notably, we used Equation (4) to calculate the weight given to each effect size used to estimate 𝜇 

in our review. The estimated weights can be found in Figure 5 in Chapter II. The above weights 

have certain characteristics that help to understand how studies and effect sizes are weighted 

(Pustejovsky, 2020). First, when the between- and within-study variance is zero, the weight given 

to a study depends on the number of reported effect sizes 𝑘𝑗, the assumed (often constant) sample 

correlation 𝜌, and the average sample variance of the study 𝜎𝑗
2. Under this scenario, if 𝜌 is close 

to one when the weight given to the study will be close to the same as the weight given to one of 

the single effect size estimates from the study. In contrast, if 𝜌 is near zero, a study will gain more 

weight as a function of 𝑘𝑗. Furthermore, under the assumption that the assumed 𝜌 is reasonable 

close to the true sample correlation, these weights will properly take into account the number of 

effect sizes within each study and their precision. Notably, this is a feature that I consider to be 

impossible to properly account for in narrative synthesis of quantitative studies.  

Second, when there is no between-study variation, i.e., 𝜏2 = 0, but a substantial amount of 

within-study heterogeneity, 𝜔2, studies reporting more effect sizes will prevailingly get more 

weight relative to studies reporting few results.  

Third, as with most weighting schemes used in meta-analysis (Borenstein et al., 2010), 

larger studies will get more weight than smaller and noisier (i.e., imprecise) studies. However, as 

with simpler random-effects models (Borenstein et al., 2010), when the between-study variance 

𝜏2 gets larger, 𝜇 will come closer to the simple average of the study mean effect sizes, 𝜃𝑗𝑠. Put 

differently, the relative weight difference between large and small studies reduces as 𝜏2 increases.  
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A statistical advantage of using CHE weights relative to the original weighting scheme for 

meta-analytical RVE models (Hedges et al., 2010b; Hedges, Tipton, & Johnson, 2010a) is that 

they represent inverse-variance weights under the working model, which consequently produces 

fully efficient estimation of 𝜇 when the working model10 is correctly specified, meaning that the 

weights yield the most precise variance estimate of 𝜇 (Pustejovsky & Tipton, 2021).  

Potential critiques against weights used in meta-analysis 

Despite the fact that the weights used in meta-analysis are mathematically transparent, it still fair 

to say that many meta-analyses lack empirical transparency since it has been shown that it is often 

impossible to reproduce the effect sizes and the corresponding variance components 𝜎𝑗
2𝑠 used for

the weight construction and estimation in the meta-analysis (Maassen et al., 2020). To remedy this 

issue, all parts of our meta-analysis, including effect size and sample variance calculations, have 

been made public at https://osf.io/fby7w/. It should even be possible for readers of the review to 

determine the page numbers from which we obtained the results used for the effect size calcula-

tions from each study. In addition, to ensure that we did not use unreasonably biased estimates of 

𝜎𝑗
2 in Equation (3), we conducted approximate cluster design adjustment techniques (Hedges,

2007; Higgins et al., 2019) so that lower-quality studies (assuming that lower-quality studies rarely 

account for clustering of students) did not get disproportionally more weight relative to more rig-

orously conducted studies (see Supplementary Section S1 in Chapter II). In other words, without 

conducting cluster design corrections, the sample variance from studies not accounting for multi-

level data structures would be too small, meaning that inappropriately more weight would be as-

cribed to these studies. However, as a sensitivity analysis, we tested the impact of not applying 

cluster bias corrections on the effect size estimation, showing that it only had a minor, non-sub-

stantial effect on our main conclusion (see Supplementary Figure S13 in Chapter II). 

As with narrative synthesis, it could be argued that the CHE model weights are based on 

quantities that are strongly dependent on the idiosyncratic assumptions of the researchers and thus 

readily subject to manipulation. For example, researchers might arbitrarily choose and change the 

value of 𝜌, which has a strong impact on the relative magnitude of 𝜏2 and 𝜔2 (Pustejovsky &

Tipton, 2021) and thereby the weights. To accommodate this concern, we conducted a range of 

10
I elaborate on what is meant by a working model in a later section. 
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sensitivity analyses in which we changed our assumption about 𝜌 to investigate how these assump-

tions impacted our main conclusion. Although, 𝜏2 and 𝜔2 often were substantially impacted by 

changed assumptions, the estimation of 𝜇 was more or less insensitive to these changes (see Sup-

plementary Figure S10 in Chapter II).  

 Additionally, the weights might be criticized for placing more weight on large studies than 

on smaller studies, under the assumption that these are more rigorously conducted compared to 

smaller studies and thus more reliable. Some would argue that this assumption is invalid since 

large studies require more resources which might include involving less proficient personnel to 

carry out the intervention, which in the end might lead to measurement errors. Consequently, it is 

assumed that giving more weight to larger studies can induce wrong null findings, also defined as 

a null bias (find these arguments in Ioannidis, 2005). Therefore, to understand the impact of large 

studies, i.e., studies with a sample size of more than 1000, we conducted a sensitivity analysis 

where we re-estimated 𝜇 by excluding large studies. However, that did not change our results in 

any substantial way (see Supplementary Figure S13 in Chapter II).  

To sum up, although meta-analytical weights might be subject to errors, I try to show in 

this thesis that the main advantage of meta-analysis compared to narrative synthesis is that it pro-

vides a means for reviewers to investigate and evaluate the impact of their proposed weighting 

schemes and model assumptions.   

 

The deficit of not using effect sizes and why we need them   

Effect sizes11—in this thesis, narrowly understood as standardized mean differences12 (Hedges, 

1981)—are the main currency of meta-analysis that provide a vital means to “facilitate[] the com-

parability of results across studies, across programs and policies, and across outcome measures” 

(Baird & Pane, 2019, p. 217). Without effect size estimates, it is impossible for narrative reviewers 

 
11 Effect sizes “are quantitative indexes of relations among variables” and “refer to any index of relation between 

variables” (Hedges, 2008, p. 167). 
12

 In the most simple case, standardized mean difference refers to a mean difference often scaled/divided by a pooled 

standard deviation, i.e., 𝑑 =  (𝑋̅1 − 𝑋̅2)/𝑆, where 𝑋̅1and 𝑋̅2 are the sample means of the treatment and control group, 

respectively, and 𝑆 it the pooled standard deviation given by 𝑆 = √
(𝑛1−1)𝑆1

2+ (𝑛2−1)𝑆2
2

𝑛1+𝑛2−2
  with 𝑆1 and 𝑆2 being the stand-

ard deviations and 𝑛1 and 𝑛2 being the sample sizes of the two group, respectively (Borenstein et al., 2009, p. 26). 

This metric is often defined as Cohen’s d. 
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to make fair comparisons about the magnitude of the effect of an intervention across studies using 

different scales of measurement, e.g., for student achievement tests. As Hedges (2008, p. 167) 

points out, it is hard to tell which effect is larger “[i]f Study A finds that the treatment effect of an 

intervention is 2.3 scale score points on the Woodcock–Johnson reading comprehension test, but 

Study B finds that the treatment effect is 7.5 points on the Terra Nova reading comprehension 

scale.” Again, as with cognitive algebra, interpreting magnitudes of effects across studies without 

using effect sizes only gets more devastating as the number of studies and effect sizes increases. It 

would require a profound knowledge of all measurement scales included in a review to make reli-

able judgments about the relative magnitude of the effect without the use of effect sizes. Most 

educational researchers will not have this knowledge, including myself. To exemplify, our review 

would have required content knowledge on more than 40 different achievement test scales to make 

a reliable judgment about the magnitude of the effect of collaborative models of instruction on 

student achievement. Effect sizes overcome this issue and allow the interpretation of results across 

studies using different scales with incommensurable units.  

Moreover, the lacking use of effect sizes is perhaps also the main reason why narrative 

synthesis of quantitative research tends to place interpretations of statistical significance as evi-

dence for the size of the effect. For example, it is common to find narrative reviewers using p 

values as evidence for a large effect of an intervention (Borenstein et al., 2009) or use wordings 

like “highly significant” to support the interpretation of a large effect. However, p values are 

strongly dependent on the sample size of the study (Hedges, 2008). This also means that it is pos-

sible to prove statistical significance for even the smallest effect with no practical relevance only 

by increasing the sample size of the studies. Therefore, it is important to remember “the fact that  

[if] one study reported a p-value of 0.001 and another reported a p-value of 0.50 [it] does not mean 

that the effect was larger in the former. The p-value of 0.001 could reflect a large effect size, but 

it could also reflect a moderate or small effect in a large study (…). The p-value of 0.50 could 

reflect a small (or nil) effect size but could also reflect a large effect in a small study (…). This 

point is often missed in narrative reviews “(Borenstein et al., 2009, p. 12). Furthermore, when 

systematic reviewers only concentrate on statistical significance, they only lend themselves to an-

swer binary research questions about whether the intervention effect is statistically different from 

zero or not, but they have no means to talk about the size of the effect. Concretely, this means that 

without effect size estimates, narrative synthesis simply has no reliable means to answer “how big 
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is the effect?”. Moreover, it is almost impossible for narrative synthesis to compare the effective-

ness of the given intervention(s) and student population(s) to other related interventions and stu-

dent populations.  

Unlike statistical significance testing, one of the benefits of using effect sizes is that they 

“depend[] only on the underlying population parameters [for standardized mean differences, i.e., 

𝛿 =  (𝜇1 − 𝜇2)/𝜎],13 not on sample size, which is particular to the study” (Hedges, 2008, p. 168). 

That said, p values can still provide valuable information about how reliable the mean difference 

might be, but they certainly do not provide an index for the magnitude of an effect (Hedges, 2008).  

 Besides the above-presented benefits, there are at least five additional advantages of using 

effect size estimates as the alternative to narrative interpretations of study results. First, the use of 

effect sizes makes it possible to correct error-prone reported results, e.g., when studies do not 

account for nesting of students in classes and school (Hedges, 2007, 2011). It is also possible to 

correct for explicit measurement errors when the reliability of the used scale is known (Hedges, 

1981; Schmidt & Hunter, 2015). The former method was highly relevant for our review since we 

have 67 out of the 76 studies that did not adequately account for the nesting of students in classes 

or schools. As previously mentioned, we conducted cluster design adjustments for these studies to 

assure that the sampling variance 𝜎𝑖𝑗
2  of each effect size estimate was reasonably accurate. This 

was important to do in order to; 1) most reliably estimate between-study variance, 2) determine 

the weights used to estimate the overall average effect, 𝜇, 3) assess the uncertainty of the estimation 

of 𝜇, and 4) assess the extent of uncertainty in the between-study variance estimate. As we will 

show in a later section, RVE ensures reliable estimates of the variance of 𝜇 even when the sample 

variance components are completely wrong. However, the three other scenarios (1, 2, and 4) hinge 

on the accuracy of the sample variance estimation, which underpins the importance of conducting 

corrections for cluster bias. Hereto, it is important to emphasize that the cluster bias adjustments 

that we used do not yield the exact sample variance of each effet size from studies not accounting 

for clustering. However, we used these techniques based on the assumption that “making no cor-

rection for the effects of clustering at all corresponds to assuming that [the intraclass correla-

tion]=0: The assumption that [the intraclass correlation]=0 is often very far from the case, and thus 

 
13 𝜇1 and 𝜇2 represent the true population mean treatment effect of the treatment and control group, respectively. 𝜎 

is the true common standard deviation of the two populations. 
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it may introduce more serious biases in the computation of variances than using values of [the 

intraclass correlation] that are slightly in error” (Hedges, 2007, p. 359). We did not correct for 

measurement errors, but whenever reported in primary studies, we coded the reliability of the test 

scale used (Schmidt & Hunter, 2015). This information is retrievable from our coding/data extrac-

tion scheme (find at https://osf.io/fby7w/) so that other researchers can deploy this approach if they 

find the Hunter & Schmidt meta-analysis technique more relevant.  

Second, it is often argued, as previously shown, that meta-analysis is only viable if all 

studies represent randomized controlled trials (Dyssegaard & Larsen, 2013; Ioannidis et al., 2008). 

However, by using either pretest- and/or covariate-adjusted effect size calculation techniques, the 

bias of including non-randomized studies can, in effect, be reduced since it “allows researchers to 

control for preexisting differences, allowing estimates of treatment effectiveness even when treat-

ment and control groups are nonequivalent” (Morris, 2008, p. 365). Therefore, to avoid inducing 

more bias than we prevent by including research designs of varying quality (Egger et al., 2003), 

we required in our meta-analysis that non-randomized studies had ensured baseline equivalence 

(as suggested in Campbell Collaboration, 2019). If not ensured, the study should either provide 

baseline/pretest achievement or covariate-adjusted measures from which we could compute pre-

test- and/or covariate-adjusted effect sizes (Morris, 2008; Morris & DeShon, 2002; Pustejovsky, 

2016; Taylor, Pigott, & Williams, 2021; WWC, 2021). By virtue of our inclusion rules, we ex-

cluded all non-randomized studies that did not ensure baseline equivalence between the interven-

tion and the control groups or did not provide results from which we could calculate pretest- and/or 

covariate-adjusted effect sizes. This was done via the use of Cochranes risk of bias assessment 

tools (Higgins et al., 2019). Independently of the research design, we always prioritized pretest- 

and covariate-adjusted effect sizes above post-test score effect sizes since a further advantage of 

this family of effect sizes is that they increase the estimated precision of the effect size estimation 

(Morris, 2008; Pustejovsky, 2020). For further details about our effect size calculation, see Sup-

plementary Section S1 and the risk of bias assessment described in Chapter II.  

Third, effect size estimates can be used to check for the consistency between reported study 

results. For example, if a study both reports difference-in-differences and ANCOVA (Analysis of 

Covariance) results from the same sample of students. In our meta-analysis, we calculated all 
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possible effect sizes whenever relevant and used these tests to inform our risk of bias assessment. 

 Forth, a clear benefit of using effect sizes relative to narrative interpretations and syntheses 

of study results is that it is possible to reliably quantify the uncertainty/precision attached to the 

given effect size/result. This properly acknowledges the fact that all research results always come 

with some uncertainty due to the fact that these always are derived from finite (student) samples. 

 Fifth and finally, effect sizes allow for the use of accurate statistical methods to conduct a 

range of tests investigating essential and potential sources and reasons for heterogeneity (Tipton 

et al., 2019a) and publication bias (Rothstein et al., 2005) that is not possible in narrative syntheses. 

I will elaborate more on this matter in the below subsection regarding the advantage of heteroge-

neity in meta-analysis. Before that, I will briefly turn to some of the common complications of 

using effect sizes.  

 

Complications of using effect sizes 

Although effect sizes have clear benefits, certain complications arise when they are used. Like 

narrative syntheses, effect size estimation has been strongly criticized for being easy to manipulate 

so that they can be fitted to the preconception of the researchers (Simpson, 2017; Stegenga, 2011). 

Along the same line, particularly, effect sizes based on standardized mean differences are criticized 

for their strong dependence on the standard deviation (SD). For example, when calculating effect 

sizes from more complex multi-level designs, such as two-level models with students nested in 

schools, effect sizes can be calculated in three different ways, either by using the within-school 

SD, the between-school SD, or the total SD that both accounts for the between and within-school 

variation. The choice of SD, in this case, will lead to very different effect size estimates (Hedges, 

2007, 2008). Thereby, researchers can potentially select the effect size that are most in line with 

the hypothesis they want to prove. To accommodate this type of cherry-picking, we ensured in our 

systematic review to standardize the mean difference by the total SD across all studies, as recom-

mended by Taylor et al. (2021). To exemplify, we found a couple of studies that only reported 

results at the class level (LaFever, 2012; Southwick, 1998). For these studies, we first standardized 

the classroom mean difference by the between-classroom SD by either using Equations (11) and 

(12) or (21) and (22) from Hedges (2007), depending on whether the exact class sizes were re-

ported for all included classes. We then converted these measures into effect sizes scaled by the 
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total variance by using Equations (25) and (26) from Hedges (2007). For these conversions, we 

imputed intraclass correlations from Hedges & Hedberg (2007), as suggested by Hedges (2007). 

See Supplementary Section S1 in Chapter II for more details or the raw effect size calculation 

codes at https://osf.io/fby7w/.  

Next, Cohen’s d has been shown to be subject to upward biases, i.e., that it yields too large 

effect size and sampling variance estimates when computed from studies with small sample sizes. 

Therefore, we used Hedges (1981) proposed small-sample correction. Hence, the effect size metric 

used in our meta-analysis was the Hedges’s g estimator.  

Finally, one of the greatest complications of using effect size estimates based on standard-

ized achievement tests is that it is complicated to interpret their practical importance because they 

are described in standard deviation units, i.e., units without a natural meaning (Baird & Pane, 2019; 

Kraft, 2020; Lipsey et al., 2012; Valentine et al., 2019). In this regard, the complication is further 

that it is difficult to re-scale standardized mean differences into natural units of analysis. Four 

strategies commonly used to overcome these issues and make interpretable translations of standard 

mean differences are; a) the number of years of learning to induce the effect, b) estimating the 

probability of scoring above a proficient threshold, c) benchmarking against other effect sizes, and 

d) converting to percentile growth (Baird & Pane, 2019, p. 217). However, it has been shown that

options a and b have substantial flaws for accurate interpretations of effect sizes. For example, 

comparing effect sizes to years of learning is based on the assumption that “learning rates accu-

mulate linearly over time (Baird & Pane, 2019, p. 225), which rarely holds hold in practice (Lipsey 

et al., 2012). On the other hand, “[o]ne problem with thresholds is that information is discarded by 

taking the continuous variable of the standardized score and converting it into a discrete variable” 

(Baird & Pane, 2019, p. 227). Therefore, we opted not to use these translation metrics to interpret 

the results of our meta-analysis. Next, option c has been criticized for being subject to cherry-

picking (Baird & Pane, 2019), meaning that researchers can just find comparison effect sizes that 

are aligned with their belief of the right interpretation. To remedy this issue, we preregistered (see 

pre-registration protocol in Chapter II) all translation metrics that we used to benchmark the de-

tected effects of our meta-analysis. Notably, we placed much weight on option d since this option 

“has several desirable properties and no strong weaknesses. (…) The only assumption made is that 

score distributions are normal, an assumption already made for standardized effect sizes” (Baird 
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& Pane, 2019, p. 226). In sum, we used three different translation options to interpret the practice 

importance of our meta-analysis results. First, we used Cohen’s U3 metric (Cohen, 1988; Valentine 

et al., 2019) and converted the overall mean effect size into a percentile growth score (Baird & 

Pane, 2019; WWC, 2020). Second, we compared all detected effects to Kraft’s (2020) empirical 

benchmark scheme for interpreting causal research on educational interventions with standardized 

achievement outcomes. Third, we compared the overall mean effect size to two related interven-

tions, i.e., class-size reduction (Filges et al., 2018) and increased instruction time (Kidron & 

Lindsay, 2014). We applied these alternative empirical benchmark effect sizes since they were 

particularly relevant to the intervention, target populations, and outcome measures included in our 

review (Hill et al., 2008) partly because these interventions represent true structural alternatives to 

collaborative instruction, and partly because the effect sizes were based on similar population and 

outcome characteristics as our review. 

As I/we also recommend in the third article of the thesis, we deliberately chose not to com-

pare our findings to any universal benchmark schemes, such as the ones suggested by Cohen 

(1988) and Hattie (2009), although widely used in education and the social sciences (Baird & Pane, 

2019; Cheung & Slavin, 2016; Hedges, 2008; Kraft, 2020; Lortie-Forgues & Inglis, 2019). The 

main reason for this is that 

 

[u]sing those categories to characterize effect sizes from education studies ... can be 

quite misleading. It is rather like characterizing a child’s height as small, medium, or 

large, not by reference to the distribution of values for children of similar age and gen-

der, but by reference to a distribution for all vertebrate mammals (Lipsey et al., 2012, 

p. 4) 

 

In this regard, it is also important to remember and repeat that Cohen (1988, p. 25) himself cau-

tioned against characterizing effect sizes equal to 0.2 as small, 0.5 as medium, and 0.8 as large. 

Therefore, one of the underlining aims of the thesis is also to show how to avoid using universal 

schemes to interpret education research and make more relevant interpretations of effect size esti-

mates in education.  
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Heterogeneity: An advantage, not a shortcoming 

“All studies differ and the only interesting questions to ask about them concern how they vary 

across the factors we conceive of as important” – Gene Glass (2000) 

One of the primary aims of the thesis is to show that heterogeneity is not a shortcoming—and 

thereby a justification of narrative synthesis in systematic review—but an advantage for meta-

analysis. In effect, I strive to show with this thesis that heterogeneity is one of the main reasons 

for doing meta-analysis. As highlighted by Viechtbauer (2005, p. 264), “researchers are becoming 

increasingly aware of the fact that detection and estimation of moderator effects is often the most 

valuable contribution of meta-analysis to the research domains in which it is applied.” In essence, 

this has been known since the beginning of meta-analysis (Glass, 2000; Hedges & Olkin, 1985). 

In fact, it was one of the main reasons why meta-analysis was originally developed in education 

and psychology and not in medicine because there was a more pressing need to understand effects 

across diverse outcomes matric (Shadish & Lecy, 2015, p. 258). As Tipton, Pustejovsky, & Ah-

madi clarify, “[a]t the inception of meta‐analysis as a field, understanding moderators of effect 

sizes was viewed as a central aim and unique strength of research synthesis” (2019a, p. 161) and 

since “meta-analysis (…) are growing in size and scope, with meta-analyses of 100 or more studies 

becoming increasingly common (…) the goals of meta-analysis have shifted from focusing pre-

dominantly on overall average effects towards understanding and explaining heterogeneity in ef-

fect sizes.” (2019b, p. 180). Nevertheless, heterogeneity is still the most common justification for 

conducting narrative synthesis and not doing meta-analysis of quantitative research (Campbell et 

al., 2019; Ioannidis et al., 2008; Melendez‐Torres et al., 2017; Petticrew & Roberts, 2008; 

Valentine et al., 2010). This is especially clear when looking at the main reasons and justifications 

for not doing meta-analysis in systematic reviews in medicine, as presented in Table 1 (Ioannidis 

et al., 2008, p. 1413) 
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TABLE 1: Reasons for not conducting meta-analysis in 135 systematic reviews from the Cochrane 

Database of Systematic Reviews 

Reason  No (%) of systematic reviews (n = 135)* 

Statistical heterogeneity too high 32 (24) 

Different interventions compared  41 (30) 

Different metrics or outcomes evaluated  26 (19) 

Different study designs 21 (16) 

Different study participants, settings 21 (16) 

Data many counts per participants 5 (4) 

Data too limited 11 (8) 

Clinical heterogeneity (not otherwise specified) 5 (4)  

Synthesis considered inappropriate (not specified why) 3 (2) 

Non-normality data 1 (1) 

No reason given 10 (7) 

Artefact 3(2) 

Quantitative synthesis is given in text 7 (5) 
Note: Percentages in parenthesis. * “Several reviews gave more than one reason without clarifying which was the 

most important. In these cases, all reasons are counted.” (Ioannidis et al., 2008, p. 1413). Italic text marks that the 

reason involves heterogeneity.  

 

From Table 1, it is apparent that heterogeneity is clearly the most widespread reason for 

not conducting a meta-analysis. Although Table 1 is obtained from medicine, the exact same pat-

terns might be expected to be found in education. As previously mentioned, DCER opted to use 

narrative synthesis instead of meta-analysis due to variation in the included study designs 

(Dyssegaard & Larsen, 2013). The same patterns underpinning heterogeneity as the main reason 

for selecting not to conduct meta-analysis are also found in other disciplines as well (see Littell, 

2008; Melendez‐Torres et al., 2017).  

In the presence of heterogeneity, it is occasionally argued that narrative synthesis should 

not be seen as a second-best solution to meta-analysis (Thomas et al., 2017) since narrative syn-

thesis “can render dense quantitative data intelligible and can increase the policy readiness of a 

systematic review” (Melendez‐Torres et al., 2017, p. 110). However, by not using meta-analysis, 

including meta-regression techniques, to investigate differential effects across effect sizes, I strive 

to show with this thesis that narrative synthesis lacks the possibility of asking and answering key 

questions of political, scientific, and practical concerns. Therefore, we actually allowed heteroge-

neity on purpose in our meta-analysis in order to answer these key questions about the relative 

effects of collaborative models of instruction and in order to test differential effects across focal 

theoretical and methodological moderators. For example, we included various interventions, stu-

dent populations, outcomes measures, and research designs in our review so that we were able to 

39



Chapter I: Overview Article 

answer questions such as: “Is co-teaching substantially more effective than teacher assistant in-

terventions?”, “Does collaborative models of instruction work equally well in general education 

and special education populations?”, “Are collaborative models more effective in Arts compared 

to STEM subjects?”, and “Does the effect vary across RCTs and non-randomized studies?”. These 

are all questions that narrative syntheses have no good means to answer reliably (Borenstein et al., 

2009; Cooper, 2015; Lipsey, 2007). The argument here is further that meta-regression techniques 

are probably one of the best methods we have in the toolbox to validly answer the key question of 

what works for whom and under what circumstances. 

To ensure valid and reliable inference of our subgroup and meta-regression analyses, we 

used HTZ Wald tests (Pustejovsky & Tipton, 2021; Tipton & Pustejovsky, 2015) and Cluster Wild 

Bootstrapping (CWB) techniques (Joshi et al., 2022) to contrast differences across covariates of 

methodological and theoretical importance.  

To these matters, it is occasionally argued that RCTs lack external validity (Cartwright & 

Munro, 2010; Reiss, 2018), i.e., that they do not provide knowledge that is relevant for understand-

ing “whether the cause-effect relationship holds over variations in persons, settings, treatment var-

iables, and measure measurement variables” (Cook, Campbell, & Shadish, 2002, p. 38). Hereto it 

is argued that “we do not have good explicit methodologies for how to establish tendency 

claims[/external validy]14” (Cartwright, 2011, p. 767). With the thesis and by exploring heteroge-

neity of the effectiveness of collaborative models of instruction, I strived to show that meta-anal-

ysis can actually provide a tool for supporting claims of the external validity/stable tendencies of 

the effectiveness of interventions. As I try to indicate with the above questions, meta-analysis 

comes exactly with the possibility to investigate the consistency of effects across variations in 

persons, settings, treatment variables, and measurement variables. The critique of not having any 

methods for making general claims might arise from the misunderstanding of meta-analysis as 

only concerning the estimation of the overall average effect size (see Cartwright & Hardie, 2012). 

This is also known as the earth is flat critique against meta-analysis (Glass, 2000), in which it is 

assumed that meta-analysts are only concerned with the overall average effect size and deliberately 

ignore more fine-grained understandings of the effectiveness of interventions.  

14
Cartwright wants to talk about tendency claims instead of external validity (see Cartwright, 2011). 
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Another advantage of using meta-analysis is that the amount of true heterogeneity can be 

quantified and investigated in reliable ways instead of being based on arbitrary, a priori assump-

tions and judgments of the reviewers, as in narrative synthesis (Borenstein, Higgins, Hedges, & 

Rothstein, 2017; Ioannidis et al., 2008; Langan et al., 2019; Viechtbauer, 2005). Moreover, heter-

ogeneity estimates in meta-analysis can provide pivotal diagnostic information with regard to what 

types of covariates might explain true variation across effect sizes (Pustejovsky & Tipton, 2021). 

For example, in our meta-analysis, we both found a substantial amount of between-study and 

within-study heterogeneity, suggesting that both moderator factors that vary at the within-study 

and between-study level might explain variation across effect sizes and should thereby be added 

to our subgroup analyses. 

 Finally, it is also paramount to emphasize that the problem of heterogeneity does not dis-

appear by selecting to use narrative synthesis. To this matter, I will argue in line with Valentine et 

al. (2010, p. 239) that “if the assertion that the studies are ‘too heterogeneous to combine’ is taken 

seriously, it precludes both a quantitative and a qualitative summary in most circumstances.”  

 

Complications of using subgroup and meta-regression models 

Although subgroup and meta-regression analyses have clear advantages over narrative syntheses 

in terms of providing evidence for how effects might vary across covariates of theoretical and 

methodological relevance, they also have certain limitations. As with all post hoc analyses, meta-

regression analysis can be prone to p-hacking (Deeks et al., 2019; Lakens et al., 2018), i.e., “non-

principled decisions during data analysis that are aimed at reducing the p-value of a significance 

test and thus make the data look more robust than they actually are” (Friese & Frankenbach, 2020). 

To overcome this issue, we preregistered all of our conducted subgroup and meta-regression anal-

yses, and we only included and tested factors that we considered to be of scientific (i.e., theoretical 

and methodological) interest in order to restrict the number of included variables in our models. 

This was particularly important since “[t]he likelihood of a false-positive result among subgroup 

analyses and meta-regression increases with the number of characteristics investigated” (Deeks et 

al., 2019, p. 269). To mitigate this problem, also known as multiplicity (Polanin, 2013), we applied 

the false discovery rate method (Benjamini & Hochberg, 1995; Laird et al., 2005), as suggested 

by Polanin (2013). Concretely, this means that cluster wild bootstrapping (CWB) p values below 

0.05 from our Wald testing were compared to a nominal Type I error rate threshold of 0.01 and 
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not the conventional value of 0.05 (find these analyses at https://osf.io/fby7w/). Yet, accounting 

for multiplicity, in our case, did not change any of the conclusions reached from the subgroup 

analyses.  

Furthermore, a clear limitation of subgroup and meta-regression models is that they are 

often substantially underpowered, meaning that there are too few studies and effect sizes in each 

subgroup for detecting meaningful effects. Therefore, it is often not sensible to conduct subgroup 

and meta-regression analyses. This issue is even further enhanced when covariates are strongly 

imbalanced and/or the moderator variables contain a substantial number of missing observations 

(Deeks et al., 2019). Therefore, we excluded variables with more than 50 percent missing values 

from our subgroup and meta-regression analyses, and we downgraded our interpretations of the 

moderator analyses based on multiple imputation techniques to handle missing values (Van 

Buuren, 2018).  

Moreover, a common critique against meta-regression, when based on continuous varia-

bles, is that it is subject to ecological fallacies, which means that patterns revealed at the study 

level do not represent the true patterns at the student level (Cooper, 2015; Cooper & Patall, 2009; 

Deeks et al., 2019). For the same reason, we did not spend much effort on coding factors such as 

the percentage of low socioeconomic students or minority students in the study sample. However, 

this critique should certainly be born in mind when interpreting our meta-regression model inves-

tigating if the percentage of males in the study sample had a moderating effect on collaborative 

models of instruction.  

The ecological fallacy in meta-regression has been known for a long time. As Gene Glass 

highlights: 

Meta-analysis was created out of the need to extract useful information from the cryptic 

records of inferential data analyses in abbreviated reports of research in journals and 

other printed sources (…) Meta-analysis needs to be replaced by archives of raw data 

that permit the construction of complex data landscapes that depict the relationships 

among independent, dependent, and mediating variables (Glass in Cooper & Patall, 

2009). 
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Hence, future meta-analyses should ideally be based on the amalgamation of individual participant 

data (IPD) to overcome ecological biases. So far, much effort has been made in medical research 

to overcome this issue (Riley et al., 2021). However, it would require that educational researchers 

radically change their attitudes toward data sharing. Though, it is possible to use hybrid methods 

for amalgamating raw and aggregated study data when some studies provide raw data (Goldstein, 

Yang, Omar, Turner, & Thompson, 2000; Pigott, Williams, & Polanin, 2012). However, we did 

not use this hybrid approach because we only found five studies that made their raw data available. 

Yet, we strived to improve the original analysis made in primary studies whenever possible. For 

example, we fitted multi-level models (Raudenbush & Bryk, 2002), guarding against misspecifi-

cation via robust variance estimation (Cameron & Miller, 2015) for the raw Project STAR data 

(Achilles et al., 2008), which was not originally conducted.  

 Since subgroup and meta-regression analyses are observational in nature, the most serious 

critique against these analyses is that they generally do not yield causal knowledge because studies 

are not randomly assigned to be in either subgroup characteristic. Thus, confounding factors might 

potentially distort the estimated relationships. Hereto, Cooper makes a distinction between study-

generated evidence and synthesis-generated evidence, where the former can establish causal con-

nections because it often draws on random assignment of students to the treatment and control 

groups, whereas the latter can only generate hypotheses about causal relations15 due to the lack of 

randomization. Hence, too strong causal interpretations of subgroup and meta-regression should 

be avoided, but they might produce invaluable knowledge about which causal connection future 

primary research should concentrate on. Therefore, it is important to emphasize that meta-analysis 

is clearly not without deficits, but it is also critical to note that the critique related to causality is 

not idiosyncratic to meta-analysis but a general critique against all types of systematic reviews and 

synthesis techniques, including narrative synthesis (Cooper, 2015). Thus, I still consider meta-

analysis as the best tool we have to date for analyzing variation across educational interventions. 

Since no experiment will ever be able to investigate all relevant differential effects, I usually think 

of this critique against meta-analysis this way (to paraphrase Donald Rubin in Van Buuren, 2018, 

Preface): It is not that meta-analysis is so good; it’s really that other methods for synthesizing 

quantitative research are so bad.  

 
15 This is also described as the ability of meta-analysis to indicate causal signs (Cook, 1994). 
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Handling dependent effect sizes in meta-analysis 

One of the main issues that required attention in order for the meta-analysis of the thesis to repre-

sent a state-of-the-art meta-analysis concerned how to handle dependencies between effect sizes 

coming from the same study most adequately. This is an omnipresent issue in educational reviews 

and meta-analyses, including our review. The following section describes the rationale behind us-

ing multi-level modeling and robust variance estimation (RVE) to handle dependent effect sizes 

in our meta-analysis, and it argues why we considered this method to represent a state-of-the-art 

technique. Furthermore, I discuss some of the inherent limitations of the method.  

Dependence structures 

Most research syntheses in the social sciences encounter that studies, authors, or research labs 

contribute with multiple effect sizes to the review, creating various statistical dependencies among 

the effect sizes. Dependence among effect sizes can be said to follow two broad dependence struc-

tures; the correlated effects structure and the hierarchical effects structure. The correlated effects 

structure is characterized by the dependence occurring in effect size estimate through the sample 

error terms, 𝑒𝑖𝑗, from Equation (1) (Hedges, 2019; Joshi, 2021). Common reasons for the occur-

rence of correlated effect sizes are; 1) studies reporting multiple measures on the same individuals 

across different time points; 2) studies measuring multiple outcomes on the same sample of indi-

viduals (e.g., math and language arts scores, respectively); 3) studies comparing different treatment 

groups to the same control group or comparing the same treatment to multiple controls. On the 

other hand, the hierarchical effects structure is characterized by the dependence occurring through 

the true effect size estimates, 𝜃𝑖𝑗, from Equation (1) (Hedges, 2019; Joshi, 2021). Common reasons 

for the appearance of hierarchical dependent effect sizes are; 1) the same author(s) or research labs 

contribute with multiple studies of the same questions, or 2) the same study reporting multiple 

effect sizes across nonoverlapping samples (e.g., result for primary and secondary students, re-

spectively). In our review, we found 45 studies having a correlated effects dependence structure, 

six studies having a hierarchical effects dependence structure, and four studies containing both 

dependency structures with multiple outcomes coming from multiple non-overlapping samples.  
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Common methods to handle dependencies among effect sizes 

In previous co-teaching reviews (Khoury, 2014; Murawski & Swanson, 2001; Willett, Yamashita, 

& Anderson, 1983), dependencies among effect sizes have been ignored. This approach can per-

form well when very few studies contribute with multiple effect sizes (Becker, 2000; Hedges et 

al., 2010b). However, as we show in our meta-analysis, it is actually more common for studies 

regarding collaborative models of instruction to contribute with multiple effect sizes than just a 

single one. Consequently, ignoring dependence among effect sizes will lead to incorrect standard 

errors and incorrect inference from hypothesis tests.  

 A popular method for handling dependence among effect sizes in education is to create a 

synthetic effect size for each study by averaging all within-study effect sizes across different out-

comes, e.g., across various kinds of achievement scores (Tipton et al., 2019b). For current exam-

ples of this approach, see Bredow et al. (2021), Furenes, Kucirkova, & Bus (2021) and Betthäuser, 

Bach-Mortensen, & Engzell (2022). However, as we show in Figure 3 in Chapter III, this method 

does not adequately control the nominal Type I error rate when multiple dependency structures are 

present in the review data,16 as we experienced. Therefore, we did not consider this to be a viable 

method to use in our review. Furthermore, it would have restricted us from investigating 

differential effects across factors varying within studies, such as different outcome measures.  

 The most sophisticated method to handle dependent effect sizes is the so-called 

multivariate meta-analysis method (Becker, 2000; Raudenbush et al., 1988), in which the 

dependencies among effect sizes are explicitly modeled by the use of the true variance-covariance 

matrix from each study reporting multiple effect sizes. However, this method has rarely been used 

in the social sciences since it requires exact knowledge about the covariance or correlations among 

effect sizes, which is information that is rarely reported in primary studies (Gleser & Olkin, 2009). 

This was also the case for most studies included in our meta-analysis. Only a few studies provided 

the necessary information required to obtain or estimate the variance-covariance matrix of the 

dependent effect sizes within the given study. For those studies that reported relevant information 

to obtain a variance-covariance matrix, we coded this information in our data extraction scheme 

so that future updates of the review can locate and make use of this information. Due to time 

constrains, we did not estimate these matrices.  

 
16 However, it is in some cases entirely reasonable to aggregate within-study effect sizes (Pustejovsky, 2019b). 
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Robust variance estimation 

To overcome the challenge of not knowing the true dependencies among effect sizes, and thereby 

to overcome the shortcomings of the above-presented methods, we applied robust variance esti-

mation (RVE; Hedges et al., 2010b; Pustejovsky & Tipton, 2021; Tipton, 2015; Tipton & 

Pustejovsky, 2015) since it has been shown to be the most accurate method for handling dependent 

effect sizes (Fernández-Castilla et al., 2020; Vembye et al., 2022 [Chapter III]). 

To explain RVE used across all models in our review, I here extend the model presented 

in Equations (1) and (2) in order to allow for the sources of heterogeneity we found during our 

overall average effect size estimation. To investigate heterogeneity, we assumed the effect size 

estimates represent a sample from some underlying population of effects and that the average ef-

fect sizes can be explained set of covariates or predictors (as Pustejovsky & Tipton, 2021). To 

explain this procedure, let x𝑖𝑗 denote a row vector of 𝑝 covariates and 𝛽 denote a vector of 𝑝 

regression coefficients, so that the meta-regression model can be express as  

𝑇𝑖𝑗 =  x𝑖𝑗𝛽 + 𝑢𝑖𝑗 + 𝑒𝑖𝑗 

where 𝑢𝑖𝑗 represent the variation not accounted for by the covariates. 

RVE 

To further explicate the underlying computational details of the meta-regression models used in 

the thesis, I will present RVE via matrix notation. The general meta-regression model can then be 

written as  

T𝑗 = X𝑗𝛽 + u𝑗 + e𝑗 

where T𝑗 represent a vector of 𝑘𝑗 effect size estimates, X𝑗 denote the 𝑘𝑗 × 𝑝 design matrix of co-

variates (for the intercept-only model, i.e., the overall average effect size model, X𝑗 denote a 𝑘𝑗 × 1 

vector of 1’s), and 𝛽 denote a 𝑝 × 1 vector of regression coefficients, u𝑗 represent a vector of 

random effects, and e𝑗 represent a vector of sample error, all for studies 𝑗 = 1, … , 𝐽.  
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To further describe the weighted least squares (WLS) estimator that we used in our models, 

let 𝐖𝑗  be an 𝑘𝑗 × 𝑘𝑗 matrix of weights for the jth study, and let 𝚽𝐣 = Var(𝐮𝒋 + 𝐞𝒋) be an 𝑘𝑗 × 𝑘𝑗  

matrix that describes the true dependency structures of the effect size estimates in the jth study 

(Pustejovsky & Tipton, 2021). The WLS estimator can then be written as 

 

𝛽̂ = 𝐌 (∑ 𝐗𝑗
′𝐖𝑗𝐓𝑗

𝐽

𝑖=1

) , where 𝐌 = (∑ 𝐗𝑗
′𝐖𝑗𝐗𝑗

𝐽

𝑖=1

)

−1

 

 

and the true sampling variance of 𝛽̂ is given by 

 

Var(𝛽̂) = 𝐌 (∑ 𝐗𝑗
′𝐖𝑗𝚽𝑗𝐖𝑗𝐗𝑗

𝐽

𝑖=1

) 𝐌 

 

If the true dependence structure had been known, then we could have calculated weights that were 

fully inverse of the variance-covariance of each study, i.e., 𝐖𝑗 = 𝚽̂𝐣
−𝟏. The weights would then 

have been fully efficient and thereby produced the smallest possible sampling variance of 𝛽̂. This 

also means that under this scenario, Var(𝛽̂) = 𝐌. When this information is not available, as in our 

case, RVE can be used to roughly and empirically approximate the dependence structure of the 

effect sizes by using the observed residuals and a small-sample adjustment matrix as substitutes 

for 𝚽𝑗. Following this approach, the robust estimator of the sampling variance can be expressed 

as  

 

𝐕𝑅 = 𝐌 (∑ 𝐗𝑗
′𝐖𝑗𝐀𝑗𝐞̂𝑗𝐞̂𝑗

′𝐀𝑗𝐖𝑗𝐗𝑗

𝐽

𝑖=1

) 𝐌, 

 

where 𝐞̂𝑗 = 𝐓𝒋 − 𝐗𝑗𝛽̂ is a vector of the residuals from the jth study, and 𝐀𝑗 denote a 𝑘𝑗 × 𝑘𝑗 

small-sample matrix, given by  
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𝐀𝑗 = 𝐖
𝑗

−
1
2 [𝐖

𝑗

−
1
2(𝐖𝑗

−1 − 𝐗𝑗𝐌𝐗𝑗)𝐖
𝑗

−
1
2] 𝐖

𝑗

−
1
2 ,

and 𝐖
𝑗

−
1

2 is the inverse of the symmetric square root of the weight matrix 𝐖𝑗 . These are the CR2

adjustment matrices (Tipton, 2015; Tipton & Pustejovsky, 2015), which are constructed so that 

E(𝐕𝑅) = Var(𝛽̂) if 𝐖𝑗 = 𝚽𝑗
−𝟏 for all 𝑗 = 1, … , 𝐽, i.e., when the working model is exactly correct

and the weights are inverse-variance.17  

Working models 

RVE in meta-analysis implies the use of working models that tentatively aim to resemble the true 

dependency structures between effect sizes as close as possible. Until recently, methods to handle 

dependencies were limited to either making purely correlated (Hedges et al., 2010b) or purely 

hierarchical (Fernández-Castilla et al., 2020; Hedges et al., 2010b; Van den Noortgate et al., 2014, 

2013) assumptions about the dependency structure, which, in turn, decreases the estimated preci-

sion of these models when the model diverges from the true dependency structures of the meta-

analytical data. In order to remedy this issue, the correlated-hierarchical effect (CHE) model was 

developed in which multi-level modeling (Van den Noortgate et al., 2013, 2014) and RVE (Hedges 

et al., 2010b) are combined (also defined as the CHE-RVE model, see Chapter II) while simulta-

neously accounting for correlated and hierarchical dependency structures (Pustejovsky & Tipton, 

2021). Because we expected at the planning stage of the review (see our protocols) both to find 

correlated and hierarchical dependence structures among effect sizes but also because we expected 

to find true random variation among effect sizes both at the between- and within-study levels—

also in moderator analyses—all of our models draw on the CHE working models. Specifically, we 

applied three different working models from the CHE model family. I will describe these working 

models below and the reasons why we used these three models. 

Correlated-Hierarchical Effects (CHE) model 

We used the CHE(-RVE) working model for estimation of the overall average effect size and all 

meta-regression models with continuous moderator variables. The CHE model is given by 

17
 This passage is taken from the first draft of the second paper of the thesis. 
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 𝑇𝑖𝑗 = x𝑖𝑗𝛽 + 𝑢𝑗 + 𝑣𝑖𝑗 + 𝑒𝑖𝑗 (5) 

 

where Var(𝑢𝑖𝑗) = 𝜏2,  Var(𝑣𝑖𝑗) = 𝜔2,  Var(𝑒𝑖𝑗) = 𝑠𝑗
2, and Cov(𝑒ℎ𝑗,  𝑒𝑖𝑗) = 𝜌𝑠𝑗

2. 𝜏 and 𝜔 repre-

sent the between-study and within-study SDs, respectively, and 𝑠𝑗
2 =

1

𝑘𝑗
∑ 𝑠𝑖𝑗

2𝑘𝑗

𝑖=1
 denote the aver-

age sampling variance of study 𝐽. Notably, this is one of the models that we developed power 

approximations for in Chapters II and III. As previously mentioned, the CHE model involves mak-

ing the simplifying assumption that there is a single constant correlation among all dependent ef-

fect sizes, 𝜌. As suggested by (Kirkham et al., 2012, p. 2182), we estimated 𝜌 “by calculating the 

Pearson correlation between the pairs of available treatment effect estimates in those studies that 

provide data on both outcomes,” in our case, this means mathematics and language arts effect 

sizes. We also used the STAR study data (Achilles et al., 2008) to obtain sample correlation to 

compare the difference between the two approaches for obtaining 𝜌. Yet, for both methods 𝜌 ≈ .7 

(see Chapter II). Since our meta-analysis data contained 280 across 96 nonoverlapping samples of 

students from 76 studies, it could potentially have been beneficial to fit a CHE+ model, accounting 

for true random variation at the sample level as well. However, we conducted a likelihood ratio 

test (Viechtbauer, 2022), showing that nesting effect sizes in samples did not improve our model 

in any way. In fact, it just moved all variation from the study level to the sample level. Therefore, 

we only used the simpler and clearer version of the CHE model.   

 

Subgroup Correlated Effects (SCE+) model 

For subgroup analyses based on categorical moderators, we varied between fitting Subgroup Cor-

related Effects Plus (SCE+) and Correlated Multivariate Effects Plus (CMVE+) models.18 The 

SCE+ model is given by 

 

 𝑇𝑖𝑗 = ∑ 𝑑𝑖𝑗
𝑐 (x𝑖𝑗βc + 𝑢𝑐𝑗 + 𝑣𝑐𝑖𝑗) + 𝑒𝑖𝑗

𝐶

𝑐=1

 (6) 

 

 
18

 The latter model is only described in the first version preprint of Pustejovsky & Tipton (2021). It can be found at 

https://osf.io/preprints/metaarxiv/vyfcj/. 
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where Var(𝑢𝑐𝑗) = 𝜏𝑐
2,  Var(𝑣𝑐𝑖𝑗) = 𝜔𝑐

2, Cov(𝑢𝑏𝑗 ,  𝑢𝑐𝑗) = 0, and Cov(𝑒ℎ𝑗, 𝑒𝑖𝑗) =

𝜌𝑠𝑗
2 ∑ 𝑑ℎ𝑗

𝐶 𝑑𝑖𝑗
𝐶𝐶

𝑐=1 . Here 𝑑𝑖𝑗
𝐶  is an indicator of whether a given outcome falls within the given sub-

group, 𝑐. The SCE+ model makes the simplifying assumptions that effect size estimates from the 

same study falling in the same subgroup are correlated, whereas effect size estimates from the 

same study falling into different subgroup categories are uncorrelated.  

Correlated Multivariate Effects plus (CMVE+) model 

Unlike the SCE+ model, the CMVE+ model is based on the more realistic assumptions that effect 

size estimates from the same study falling in the same subgroup are correlated and that effect size 

estimates from the same study falling into different subgroup categories are correlated, as well. 

The CMVE+ model is given by 

𝑇𝑖𝑗 =  x𝑖𝑗β + ∑(𝑑𝑖𝑗
𝑐 𝑢𝑐𝑗 +  𝑑𝑖𝑗

𝑐 𝑣𝑐𝑖𝑗) + 𝑒𝑖𝑗

𝐶

𝑐=1

(7) 

where Var(𝑢𝑐𝑗) = 𝜏𝑐
2, Cov(𝑢𝑏𝑗 ,  𝑢𝑐𝑗) = 𝜓𝑏𝑐𝜏𝑏𝜏𝑐, Var(𝑣𝑐𝑖𝑗) = 𝜔𝑐

2, Cov(𝑣𝑏𝑖𝑗 ,  𝑣𝑐𝑖𝑗) = 𝜁𝑏𝑐𝜔𝑏𝜔𝑐,

and Cov(𝑒ℎ𝑗 ,  𝑒𝑖𝑗) = 𝜌𝑠𝑗
2. 𝜓𝑏𝑐 and 𝜁𝑏𝑐 are the correlations between the random effects at the study

and effect size level, respectively. A further advantage of using the CMVE+ model is that by al-

lowing for correlation among the random effects, it is possible to investigate if interventions that 

have a large impact on outcome A also tend to have a large impact on outcome B.   

Constraints of the CMVE+ model  

Although the CMVE+ model is be assumed to represent the “golden” standard in terms of preci-

sion compared to the SCE+ model, it only works under rather narrow conditions when   

1) there are few multivariate dimensions

2) there are a substantial number of studies and effect sizes available from each dimension.

3) there are a substantial number of studies having effect sizes from each possible pair of

outcome dimensions.
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In particular, these conditions were only met for our moderator analysis regarding the differential 

effects of collaborative instruction between Arts vs. STEM subjects. To investigate and decide if 

the categorical subgroup moderator was viable to be fitted to the CMVE+ model, we used what 

we call overlapping tables, as suggested in the Supplementary Material linked to Pustejovsky & 

Tipton (2021). Find these analyses in Supplementary Section S4 in Chapter II.  

 

Further advantages of using CHE models 

A significant advantage of the CHE models is that they allow reviewers to make reliable multi-

contrast tests between subgroup effect sizes because they fit all subgroup dimensions into one 

model (Pustejovsky & Tipton, 2021; Tipton & Pustejovsky, 2015, see also Supplementary Section 

S3 in Chapter II). This is not possible when splitting subgroup analyses so that they conduct sep-

arate meta-analyses for each outcome, which is a common approach used in social science reviews 

(Polanin, 2013; Tipton et al., 2019b).     

 

Limitations of the CHE models 

Although the CHE model family has a number of advantages compared to other common methods 

for handling dependent effect sizes, they also come we certain limitations. The most important 

limitation is that the estimation of the individual random variance component (i.e., in our case, the 

estimation of the between- and within-study variance components) is strongly impacted by the 

assumed (constant) sample correlation. Thus, any substantial interpretation of the exact magnitude 

and the relative magnitude of the between- and within-study variance should be made with caution 

for the CHE model. However, it is important to note that the total variance estimate is generally 

insensitive to the assumed constant sample correlation (see, for instance, Supplementary Figure 

S10 in Chapter II). Furthermore, the sensibility of the variance component estimates also compli-

cates the estimation of prediction intervals for the CHE model since it is generally not viable to 

combine robust and non-robust estimators, as it would require estimating a prediction interval for 

𝜇 of the CHE model. Some researchers might see this as a strong limitation of the CHE models 

because they consider prediction intervals as one of the most important sources of information in 

meta-analysis (Borenstein, 2019). Despite this limitation, we/I have followed the argument put 

forward by Pustejovsky & Tipton (2021, p. 437), “that it is better to apply a working model that 

captures the structure of one’s data—even if the variance component estimates are sensitive to 
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assumptions—than to use one that imposes stronger and less plausible assumptions (i.e., that there 

is no within-study heterogeneity [or no correlation among within-study effect sizes]).” 

Additionally, a limitation of the CHE model family is that it is still unclear how they per-

form when moderators are strongly imbalanced, which would, for example, be the case if one or 

few studies contribute with the majority of effect sizes to the analysis. However, an advantage of 

the CHE model is that they apply Satterthwaite’s degrees of freedom (Satterthwaite, 1946), which 

can provide diagnostic information regarding the certainty in the variance estimation. Generally, 

Satterthwaite degrees of freedom estimates below five indicate that there might be substantial un-

certainties attached to the variance estimation.  

Finally, the fact that researchers can choose between a number of CHE working models 

makes them subject to what is called the “researcher degrees of freedom”—the meta-analytical 

equivalent to p-hacking–to which the model selection is based on whether the models yield statis-

tically significant results or not. However, as we strive to show with our review, preregistration of 

a protocol, including analytical plans, can overcome this issue.  

Current methodological limitations for meta-analysis of dependent effect sizes 

As is apparent from the above section, meta-analytical methods to handle dependent effect sizes 

do still have some clear boundaries. To push some of these boundaries, the thesis introduces new 

power approximation formulas for meta-analysis of dependent effect sizes and introduces the PO-

MADE R package that aims to increase the accessibility of the conduct of this type of analysis. 

Thereby the thesis implicitly aims to replace previous power approximation methods that were 

based on the assumption of independent effect sizes (Hedges & Pigott, 2001) and previous tools 

for conducting power analysis for meta-analytical models (Harrer et al., 2019). Yet, this only rep-

resents a minor contribution to remedying the lack of statistical methods for handling dependent 

effect sizes. For example, methods for conducting precision analyses (Rothman & Greenland, 

2018) and power analyses of subgroup models still need more attention. Currently, these methods 

can only be conducted via the use of Monte Carlo Simulation (MCS) (Morris, White, & Crowther, 

2019). The main concern about this approach, however, is the level of complexity which probably 

discourages most applied reviewers from conducting such analyses. It is, therefore, critical that the 
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community of meta-analysis methodologists develops new and more accessible methods for ap-

plied reviewers.  

Further methods that still need more attention in the presence of dependent effect sizes are 

selection models (Hedges & Vevea, 2005), prediction intervals (Borenstein, 2019), and methods 

for conducting reliable Wald tests (Joshi et al., 2022; Tipton & Pustejovsky, 2015) across multiple 

imputed datasets, just to mention some of the limitations we experienced during the conduct of 

our review. Moreover, it is important to expand the software for conducting power-analysis for 

meta-analysis of dependent effect sizes so that these are available to non-R users as well.  

 

3. Educational Theory 

Although the overall focus of the thesis is on the methodological conduct of systematic reviews 

and meta-analysis, the substantive analysis of our review was strongly motivated by educational 

theories. Essentially, without profound (educational) theory, it would not have been possible to 

answer the second research question of the thesis since a part of conducting a state-of-the-art meta-

analysis entails aligning the meta-analysis to the theory or theories of the area under review (Pigott, 

2012). Therefore, in our review, educational theories regarding the effectiveness of collaborative 

models of instruction on student achievement significantly informed and guided the development 

of our search string, our coding scheme, and the conduct of statistical hypothesis testing. Specifi-

cally, we drew heavily on three seminal articles on co-teaching19 (Cook & Friend, 1995; Friend, 

2008; Murawski & Swanson, 2001) and one on teacher assistants20 (Muijs & Reynolds, 2003) to 

develop our review.  

 

 

 

 

 

 
19 Defined as: two or more professionals delivering substantive instruction to a diverse, or blended, group of students 

in a single physical space” (Cook & Friend, 1995, p. 2). The term ‘professionals’ in this regard specifically refers to 

the collaboration between a general and a special education teacher, such as a speech-language clinician, reading 

specialist, bilingual teacher, or occupational therapist.   
20 Defined as: in-class collaboration between a general education teacher and adults/paraprofessional educators with-

out a formal teacher education such as pedagogues, (voluntary) parents, etc. (Blatchford et al., 2011). 
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Testing theory through meta-analysis 

Common for all collaborative models of instruction is that they draw on the same causal theory 

about the effect of reducing the student-teacher ratio, as depicted in Figure 1 (see Blatchford et al., 

2011; Cook & Friend, 1995, pp. 3–4; Muijs & Reynolds, 2003, pp. 221–222 for overlaps in theory). 

Figure 1 is developed with inspiration from Filges, Sonne-Schmidt, & Jørgensen (2015) since 

models of collaborative instruction strongly overlap with theories on class-size reduction as well. 

The assumed common causal mechanism underlying the effectiveness of collaborative models of 

instruction is that the reduction of the student-teacher ratio has a positive effect on two focal lines 

of factors. Each of which, in turn, opens different paths to increased student learning. As illustrated 

in Figure 1, the first hypothesis is that having two in-class teachers can increase student learning 

by reducing the number of disciplinary problems, making time for more instruction and in-depth 

treatment of the content, which then improves learning conditions. On the other hand, it is assumed 

that reducing the student-teacher ratio increases student learning by providing the opportunity for 

teachers to make more appropriate personalized instruction for each student, augmenting student 

engagement and self-confidence, and ensuring that students spend more time on tasks, which in 

the end increases learning conditions.  

In addition to the above-presented main assumptions, the co-teaching theory adds a number 

of assumptions about under which (narrow) conditions co-teaching can work or works most effec-

tively. According to the co-teaching theory, one of the most important components underpinning 

the effectiveness of co-teaching is the use of a formally educated special education teacher (Cook 

& Friend, 1995; Friend, 2008). Hereto, it is assumed that an equal share of instruction between the 

general and special education teachers is vital for increasing student learning since it combines the 

general teacher’s in-depth knowledge of the curriculum with the specialized knowledge of the 

special education teacher about customizing the instruction the needs of the individual student. 

Therefore, it is also presumed that this approach significantly enhances the appropriate personal-

ized instruction for each student and that it is the most optimal approach to capitalize on the in-

creased instruction time. These two assumptions are depicted by the dashed square and lines in 

Figure 1.  
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However, we were quite skeptical about the empirical foundation of these strong assump-

tions put forward by the co-teaching theory, and we wanted to use meta-analysis to test if adding 

a special education teacher relative to non-formal teacher-educated personnel would explain a 

large difference in effect sizes, as shown in Figure 1. Consequently, we carefully coded the exact 

two-teacher compositions used within and across all studies so that this potential difference in 

effect could be tested.  

Furthermore, besides making assumptions about the effectiveness of particular two-teacher 

compositions, the co-teaching theory further assumes that collaborative instruction is only effec-

tive when; 1) co-teaching training is provided, 2) time for co-planning is provided, 3) using a 

variety of co-teaching models, 4) co-teaching is provided for more than a year, 5) provided for 

two sessions per week, 6) teacher collaboration is voluntary, and 7) the two teachers have a sound 

working relationship (Cook & Friend, 1995; Dafolo, 2019; Friend, 2008). To further test the co-

teaching theory, we drew on these assumptions to develop our data extraction scheme questions in 

order to test differential effects across the factors. After pilot testing our scheme on eight studies, 

we dropped the investigation of assumptions 6 and 7 since these factors were not mentioned fre-

quently in the (pilot) literature—yet, I also consider it a key part of systematic reviewing to show 

the boundaries of the given literature under review. All other factors were retrievable for more 

than 50% of the eligible studies. However, since these factors were never fully reported across all 

included studies in the review, we had to impute plausible values for studies containing missing 

information, inducing an unknown degree of error in our investigations. The main takeaway from 

our theoretical endeavors was, therefore, that more knowledge is needed about moderating effects 

of collaborative models of instruction and that the assumptions made in co-teaching literature are 

not well supported empirically.  

The underlining aim of conducting tests like the ones presented above was to show how 

meta-analysis can contribute to new theoretical explanations for the effectiveness of collaborative 

models of instruction, as suggested by Cook et al. (1992). To gain a more in-depth theoretical 

understanding of the effectiveness of collaborative models of instruction, we would have liked to 

test interaction effects between these moderators of theoretical importance. However, the number 

of included studies and calculated effect sizes did not provide enough statistical power to conduct 

these types of tests (Cook et al., 1992). 
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4. Philosophy of Science 

This thesis is based on a (critical) realist perspective on science, society, education, and causality 

(Sayer, 1999).21 This implies that although we find persistent and robust effects across various 

student populations, settings, treatment compositions, and outcomes—suggesting that collabora-

tive models of instruction have high external validity—we do not perceive our results to represent 

a causal social law that works for all students in all circumstance and across all contexts. Instead, 

we acknowledge that the effectiveness, efficiency, and efficacy of social interventions are strongly 

context dependent. As depicted in Figure 2, the capacity of a social intervention to produce its 

effects strongly depends on the underlining condition surrounding the causal chains from the in-

tervention to its effect, like the causal mechanisms of collaborative models of instruction illustrated 

in Figure 1 above. If the causal chains break, no effects will appear. Say, for example, that two 

teachers are neither able to increase the net instruction time nor to provide more personal instruc-

tion, then it is rather unlikely that they will bring about the expected effects of collaborative in-

struction. 

 

FIGURE 2. A realist view of causation 

 

 

The empirical domain 

Empiricism/ 

Positivism 

 

 

(Critical) Realism 

 

                           experience/observation/testing 

 

The actual domain When event A, 

then event B 

 

                                       effect/event 

 

The real domain   

                 mechanism 

 

structure                           conditions (other mechanisms) 

Note: Inspiration from Sayer (1999) and Buch-Hansen & Nielsen (2005, p. 27). The real domain contains all humans 

and objects' capacities to function in certain ways (over time, these might change), whether or not these are actualized, 

whereas the actual domain contains all events that have ever happened/been potentialized, and the empirical domain 

contains the human experiences, observation, and measuring of the actual events. The empirical fallacy is to collapse 

all domains into one.   

 
21 This view is based on the conviction that nature and human actions, including education, represent objective real-

ities that are comprised by causal connections and effects that exist independently of the human perception of these 

entities but can in part be experienced, observed, tested and measured. I will mainly focus on my view on causality in 

this section since this part of the realist theory played the largest role in the project compared to the general realist 

theory of science. 
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This view on causation further explains why there is nothing mysterious about research 

studies not showing the exact same effect since all studies are surrounded by different contextual 

supporting mechanisms. To adequately illustrate the connection between contexts and social in-

terventions, it can be helpful to use the notion of causal principles (CP), suggested by Cartwright 

& Hardie (2012, p. 26) and Kvernbekk (2016). To illustrate the CP for the effects of collaborative 

models of instruction on student achievement across studies, let 𝑦𝑗(𝑖) be the effect on student 

achievement and 𝑦𝑗(𝑖)0 be the student baseline level before the intervention for student 𝑖 in study

𝑗, for all students 𝑖 = 1, … , 𝑁 and studies 𝑗 = 1, … , 𝐽. Then, let 𝑏𝑗 denote support factors consoli-

dating the effectiveness of the collaborative models of instruction intervention 𝑥𝑗 (for example, 

these support factors could be more released instruction time and more personalized instruction, 

as given in Figure 1), 𝑧𝑗(𝑖) represent other factors that have an impact on 𝑦𝑗(𝑖) that does not con-

cern 𝑥𝑗 (for example, teachers' and students’ abilities, support from parents, etc. These can also be 

considered as confounding factors/covariates), and 𝑢𝑗(𝑖) denote further random unknown factors 

that might contribute to increasing student achievement but which do not interact with either the 

intervention or its support factors, all for students 𝑖 = 1, … , 𝑁 and studies 𝑗 = 1, … , 𝐽. The CPs 

governing the effectiveness of collaborative models of instruction between students across the in-

cluded studies in the meta-analysis can then be expressed as 

CP1: 𝑦1(𝑖) = 𝑦1(𝑖)0 + 𝑏1𝑥1(𝑖) + 𝑧1(𝑖) + 𝑢1(𝑖) 

 CP2: 𝑦2(𝑖) = 𝑦2(𝑖)0 + 𝑏2𝑥2(𝑖) + 𝑧2(𝑖) + 𝑢2(𝑖) 

⋮ 
CP𝐽: 𝑦𝐽(𝑖) = 𝑦𝐽(𝑖)0 + 𝑏𝐽𝑥𝐽(𝑖) + 𝑧𝐽(𝑖) + 𝑢𝐽(𝑖)

(8) 

As Equation (8) here illustrates, from the realist view, all students included in our meta-analysis 

are, in principle, governed by different contextual conditions that determine the effectiveness of 

collaborative models of instruction. This also means that even in the same treatment group in the 

same study, some student might increase their academic achievement while others might not, 

simply because different conditions (i.e., 𝑦𝑗0
, 𝑏𝑗 , 𝑧𝑗, and 𝑢𝑗) between students might support or ob-

struct the working of collaborative models of instruction (Cartwright, 2007). That said, it is im-

portant to notice that in our meta-analysis, we are looking for systematic, average effects of 𝑥𝑗, 

i.e., we aim to detect the overall proportional difference(s) between students that experienced an
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increased achievement when exposed to collaborative instruction compared to single-taught envi-

ronments across a substantial variation in both systematic and unsystematic preconditions and con-

texts. Again, “this does not mean that systematic [effects] respent constant[s]” (King et al., 1994, 

p. 62). More precisely, the inferences made in our review pertain to generalized causal inferences 

(Cook et al., 2002) that might support predictions for the effectiveness of collaborative models of 

instruction at the political level if/when disseminated to all or large parts of a school system. There-

fore, our meta-analysis does not provide a blueprint for the effectiveness of collative instruction at 

the student level since this strongly bears on the individual educational context (i.e., 

𝑦𝑗0
, 𝑏𝑗, 𝑧𝑗, and 𝑢𝑗).  

 

Randomization and counterfactual reasoning 

Equation (8) further helps to illustrate why we favored randomized studies in our review since it 

can show how randomization provides a means to ensure balances of observable and non-observ-

able covariates/confounders (i.e., 𝑦𝑗0
, 𝑏𝑗 , 𝑧𝑗 , and 𝑢𝑗), guarding against systematic differences be-

tween the intervention and control group (Rosenbaum, 2017, pp. 10–11), which in turn strongly 

increases the likelihood of finding the true effect of an intervention.  

On another line, a key conception not only belonging to randomized studies but to all con-

trol group designed studies is the notion of counterfactual reasoning (Pearl, 2009; Pearl & 

Mackenzie, 2018), which I/we consider to be the most reliable ground for causal knowledge. For 

example, without the use of reliable control groups, it would be almost impossible to decipher the 

effect of collaborative models of instruction from the effect of students natural maturing and de-

velopment.22 Thus, subtracting the control group effect from the treatment group effect aims to 

isolate the treatment effect by removing all parts of the effect not coming from the treatment.  

In sum, educational statistics and quantitative methods are often connected with positiv-

ism/empiricism (Chakravartty, 2011) and are criticized for disseminating a simplistic regularity 

view of causality that does not represent true educational processes (Biesta, 2007; Hammersley, 

1997). However, I strive to show with the thesis that it is possible to make reliable generalized 

causal inferences without neither subscribing to a simplistic regularity view of causality nor 

 
22

 In fact, this was the main reason why we did not include single-group pre-posttest designed studies in our meta-

analysis. 
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abandoning causality in education, as is argued by critiques of evidence-based research (Biesta, 

2007; Hammersley, 1997; Korsgaard, 2020).    

5. Open Science – Preregistration, Open Material, and Open Data

The principles of open science23 have guided all articles of this thesis in various ways. The follow-

ing section is devoted to describing the reasons behind and the value of open science and open 

data procedures in relation to the thesis.  

Preregistration, open materials, and open data in systematic reviews and meta-analyses 

We preregistered the analysis plan24 [see Protocol in Chapter II] for our systematic review and 

meta-analysis via the PRISMA-P statement (Moher et al., 2009) and the Open Science Framework 

(OSF)25 template for two broad reasons. First, this prevented our analyses from being subject, 

either consciously or unconsciously, to questionable practices such as p-hacking (see definition in 

Section 2) and HARKing (Kerr, 1998, p. 196), i.e., “hypothesizing after the results are known”. 

Second, it provides a means to make a clear distinction between confirmatory analyses, i.e., anal-

yses planned prior to the data analysis, and exploratory analysis, i.e., analyses planned during the 

data analysis. This ensures that other researchers can closely investigate the difference between 

our initial plan and the final analysis (Moreau & Gamble, 2020; Nosek et al., 2018). It was not that 

we did not diverge from our initial plan, as will almost always be expected. However, we carefully 

documented all deviations from the protocol to ensure full transparency.  

To further improve transparency, all background materials linked to our review and meta-

analysis have been open sourced via OSF. We did that for various reasons. First and foremost, to 

ensure the trustworthiness of the review. It was especially important for me, as a single-coder of 

most of the effect sizes, the data extraction, and the risk of bias assessment, to ensure that these 

procedures were fully transparent and that other researchers can check their accuracy. For the same 

reason, I documented the exact pages from where all data were extracted since this has been a great 

23
i.e., the idea of making all parts of research (including data, analysis codes, other background materials, software,

publication) accessible to the public. 
24 We have two protocols because the CHE models were developed after we made the first version. The second version 

incorporate our change of models. 
25 See https://osf.io. 
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frustration of mine when I read other systematic reviews and meta-analyses. In this regard, open-

sourcing of our material also aims to avoid cognitive algebra, as discussed in Section 2. Further-

more, meta-analysis has been criticized for not being reproducible due to the lack of transparency 

in effect size calculations, and we wanted to overcome this issue (Maassen et al., 2020). 

 Yet, we also shared all of our data and analysis codes so that other researchers can either 

reproduce/test our results, conduct further relevant analyses, or easily update the review when 

more studies get published. Hereto, as I/we show in the third article of the dissertation, data sharing 

is a pivotal means, among other things, for making power analysis for meta-analysis of dependent 

effect sizes a common and reliable practice in systematic reviews. Lastly, one of the chief aims of 

making all codes available was to inspire future meta-analyses and provide the review community 

with solutions for complex coding tasks in meta-analysis, just as I have been inspired by other 

researchers’ codes during this dissertation (in this regard, special thanks go to James E. 

Pustejovsky, Megha Joshi, and Wolfgang Viechtbauer).  

 

Open data and codes for statistical simulation studies 

Likewise, open data and codes are all-important for the credibility of simulation studies to avoid 

being subject to “selective reporting of only the most favorable (or unfavorable) configurations of 

data-generating mechanisms, running the simulations many times under different seeds and select-

ing the most favorable” (Morris et al., 2019, p. 2096). It was further important to ensure transpar-

ency of our codes since we especially favor the CHE-RVE model relative to other models for 

handling dependent effect sizes. Thereby, had we not shared the codes, other researchers could 

potentially and rightly criticize us for just reporting results that favored the performance of the 

CHE-RVE model. 

 

Open codes for software/package developments 

Finally, open science played a key role in the development of the POMADE R package, presented 

in the third article of the thesis. Besides ensuring the transparency of the package, the sharing of 

all package functions via GitHub enables researchers to report bugs and make suggestions for how 

we can improve the package (Wickham, 2015). 
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The use of R(Studio) 

Our use of the statistical environments R (R Core Team, 2022) and RStudio (RStudio Team, 2015) 

has a vital impact on the reproducibility of the thesis since it is free of charge. Consequently, most 

analyses of the thesis can be reproduced by downloading R and RStudio and either pressing Ctrl 

+ ENTER or Ctrl + Alt + R, depending on whether an R script or Rmarkdown document is used.

That way, the accuracy of all analyses included in the thesis can more easily be assessed. 

6. Methodology

The thesis had to overcome a number of methodological challenges, too. In this section, I give a 

brief overview of the five most important ones that I/we encountered during my dissertation work, 

and I present how I/we attempted to tackle these issues.  

Challenge 1: Finding all relevant literature 

One of the greatest threats to the validity of systematic reviews and meta-analyses is the failure to 

locate all studies and materials relevant to the research topic. This can induce serious biases of 

various kinds, ultimately compromising the conclusion and generalizability of the given review 

and meta-analysis (Reed & Baxter, 2009). Therefore, high-quality literature searches and screen-

ings of the found literature are critical to mitigate this type of bias in systematic reviewing and 

meta-analysis. In the following subsections, I will describe how we strived to ensure these two 

parts of our review, presented in Chapter II. 

Search procedures 

Search string 

Since we aimed at conducting a systematic review across several social science disciplines and 

different types of interventions, we spent much time thoroughly developing a search string that 

equally covered all pertinent conceptions and terms differently used across the literature. To this 

end, we scrutinized both seminal articles across co-teaching and teacher assistant literature and 

different disciplines of social science (e.g., education and political science) to pick relevant key-

words for our search string. Thereafter, we consulted the local librarian to optimize the relevance 

of the search string. Finally, we pilot tested the search string to optimize the precision of the search, 

62



Chapter I: Overview Article 

i.e., to ensure a proper dimension between the records of interest and all records retrieved from 

the search (see Figure 5.3. in Brunton et al., 2017; Kugley et al., 2016).  

 

Relevant databases  

Selecting all relevant bibliometric databases pertinent for the literature search is critical to ensure 

adequate subject coverage across the social science literature and, thereby, to ensure that the liter-

ature searches yield the most relevant records (Reed & Baxter, 2009). To this end, we first searched 

a range of systematic review databases to locate previous reviews concerning collaborative models 

of instruction and thus to find out how our review could contribute to the topic area. Second, we 

searched bibliometric databases in education and the social sciences that are commonly used in 

reviews in education (Dietrichson, Bøg, Eiberg, Filges, & Jørgensen, 2016; Filges et al., 2015; 

Polanin, Espelage, & Grotpeter, 2018), and that are recommended by the Campbell Collaboration 

(Kugley et al., 2016). It was important for us to ensure that we also screened gray literature26 in 

our search to avoid inducing publication biases27 into our results (Rothstein et al., 2005). There-

fore, the ProQuest Dissertation and Thesis database and Google Scholar (Haddaway et al., 2015) 

played a key role in our literature search. Although our Google Scholar search is not reproducible, 

we applied Google Scholar based on the philosophy that increasing the number of studies included 

in the review and meta-analysis was of higher priority than reproducibility.  

 

Citation tracking  

As a further technique to identify all relevant literature, we conducted citation tracking/snowball-

ing from all previous literature reviews (see Figure S1 in the Supplementary Material in Chapter 

II) and journal articles regarding the effects of collaborative models of instruction on student learn-

ing included in the meta-analysis.  

 

 

 

 
26 i.e., literature that has not been published in peer reviewed scientific journals, such as dissertations and conference 

papers (White, 2009, p. 61).  
27 “Publication bias is the term for what occurs whenever the research that appears in the published literature is sys-

tematically unrepresentive of the population of completed studies” (Rothstein et al., 2005, p. 1). The most popular 

example is when researchers conduct selective reporting, depending on statistical significant results.  

63



Chapter I: Overview Article 

Author solicitation 

Although it was initially planned that we should conduct comprehensive author and expert solici-

tations, we chose not to spend time on this technique to locate relevant records. The main reason 

for not doing so was to save time which was needed to complete the present dissertation on time, 

but also, in part, because previous research showed that only 12% of primary authors replied to 

solicitations, of which only 0.5% provided pertinent information (Polanin et al., 2020).  

Screening procedures 

Yet another critical source to avoid biases in systematic reviews and meta-analysis is to assure that 

the abstract and full-text screenings of the literature identify all relevant studies. For this purpose, 

we double-screened all located abstracts and all relevant full-text literature independently. Previ-

ous research has shown that the use of a second reviewer increases the number of eligible studies 

located during the abstract screening by approximately 6-10% and a further 6-10% during the full-

text screening (Stoll et al., 2019). Moreover, we also used this procedure to avoid being subject to 

cognitive algebra, as described in Section 2 of this overview article. Importantly, no studies were 

excluded by a single author. We tracked all of our screening in Covidence to ensure full transpar-

ency of inclusion and exclusion reasons.  

Challenge 2: Extracting all relevant and reliable information 

Although all abstract and full-text screenings were double-coded, we were not able to double-code 

all parts of our review due to resource limitations. Therefore, most of the data extraction, effect 

size calculations, and risk of bias assessments were conducted solely by me. This could potentially 

have induced a degree of bias in the review, for example, because I can have overlooked relevant 

information, I can have made computational errors or coding errors, or I can have made wrong 

decisions during the risk of bias assessments. Yet, I/we introduced a number of quality assurance 

mechanisms to alleviate these issues. I will briefly describe these procedures in the following sub-

section. 
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Quality assurance procedures 

Data extraction 

To mitigate potential biases of single-coder data extraction, all studies received data extraction 

twice. Although work-intensive, it was all-important to ensure the accuracy of the data extraction 

because flawed extractions might induce serious bias in our results. Therefore, it was also im-

portant for me to ensure that all quotes relevant to the data extraction were thoroughly documented 

in the data extraction scheme. Concretely, I documented the page numbers to warrant transparency 

of my extraction. As previously mentioned, all data extraction is, furthermore, open-sourced so 

that other researchers can scrutinize and critically investigate my extractions for potential errors.   

 

Effect size calculation 

Since effect size estimates constitute the backbone of meta-analyses, it was decisive for me to 

ensure reliable and transparent effect size computations. It is common to find meta-analyses in 

education in which all effect sizes and their standard errors are calculated as if they are coming 

from simple research designs only (see Equations (4.18) and (4.20) in Borenstein et al., 2009, pp. 

26–27). This can lead to a number of deficits when applied to standardized mean differences esti-

mated from more advanced research designs, such as repeated measures designs or clustered de-

signed studies (Pustejovsky, 2016). For the former sets of designs, using simple effect size calcu-

lation formulas yield overly conservative standard errors, and for the latter, it yields too small 

standard errors. Therefore, it was important for us both to ensure that all effect size calculations 

were tailored to the specific study design and that all effect sizes represent the same unit of analysis 

(Hedges, 2007; Taylor et al., 2021).28 As a consequence, effect size calculation becomes more 

complex, which, in turn, increases the likelihood of either making computational errors or coding 

errors. To ensure that cluster design adjustments were rigorously conducted, I built a function that 

could handle this correction. This means that all potential formula errors pertaining to clustered 

bias adjustments can be detected exclusively from this function. Furthermore, Bethany H. Bhat 

conducted quality tests for the 12 studies that required the most complex effect size calculations 

and for the coding that led to the final analyses (Hofner et al., 2016). This procedure is recom-

mended by the Campbell Collaboration (2019) in cases where the full use of double-coders is not 

 
28

 See Supplementary Section S1 for a detailed explanation of the effect size calculation procedure.    
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possible. Independently of these quality checks, the single-coder extraction and coding might have 

prompted that I have missed some relevant information for the effect size calculation, e.g., infor-

mation relevant to estimating pre-posttest correlations. However, to reduce the severity of this bias, 

all studies excluded due to lacking opportunities for effect size calculation were made by two 

reviewers. Finally, all effect size calculations are open-sourced so that other researchers can further 

inspect these for potential errors.  

RoB assessment: Mitigating the garbage in, garbage out/no causes in, no causes out critique 

Besides finding all relevant studies and information within eligible studies, it was pivotal for us to 

ensure the validity and reliability of the information going into the meta-analysis to avoid that we 

do not induce unnecessary biases by including various types of literature and research (Egger et 

al., 2003). Meta-analyses are often accused of being subject to the garbage in, garbage out critique 

(Borenstein et al., 2009), to which it is argued that including many low-quality studies that are not 

able to reliably detect causal effects induce fundamental errors in the meta-analysis and thus ob-

struct reliable inference. For that reason, this critique is also described as the “no causes in, no 

causes out” critique (Cartwright & Hardie, 2012, p. 38). To accommodate this issue, I/we con-

ducted comprehensive risk of bias (RoB) assessments (Higgins et al., 2019) for all treatment and 

control studies (i.e., 128 studies) concerning the effects of collaborative models of instruction. For 

non-randomized studies, we used the ROBINS-I tool (Sterne et al., 2016) to exclude those studies 

that were considered to be of critical risk of bias. Yet, to avoid that no study was erroneously 

omitted, all exclusions were double-checked by two reviewers. However, all RoB assessments for 

included studies were solely conducted by me. Consequently, this might potentially have induced 

some degree of error. However, all RoB assessments are open-sourced so that others can critically 

assess this issue.  

To recapitulate, and as previously mentioned, no studies were excluded without agreement 

between at least two reviewers. Therefore, the single-coder and -rater procedures used throughout 

the review should mainly have had an impact on internal errors of the included studies. It can, for 

example, be the case that I have judged a study to be of moderate risk of bias when it, in fact, is 

serious or that I did not find all relevant information, wrongly producing a missing value on a 

given variable/characteristic, etc. 
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Challenge 3: Ensuring accurate statistical estimation in our meta-analysis 

As also shown in Chapter III of the thesis, a key source of bias in systematic reviews and meta-

analyses relates to the accuracy of the methods used to estimate effect sizes and fit meta-analytical 

models. As discussed and shown throughout this introductory chapter (cf. Section 2, in particular), 

we have strived to use state-of-the-art methods for effect size calculation and modeling of depend-

ent effect sizes to reduce this bias. However, three issues could still occur, potentially compromis-

ing the accuracy of the results of the meta-analysis that are independent of the performance of the 

statistical methods used. First, since meta-analysis bears on many small decisions made by the 

reviewers (Moreau & Gamble, 2020), its results can depend on these idiosyncratic decisions. 

Therefore, to challenge and investigate the impact of our review decisions, we conducted a range 

of sensitivity analyses in which we changed the effect size calculation assumptions and applied 

inclusion criteria (see Figures 6-7 and Supplementary Figure S13 in Chapter II). Second, although 

we strived to guard against publication bias via our search for gray literature, selective reporting 

might still appear in the included set of studies (Pigott et al., 2013). If small sample studies sys-

tematically report larger effects, for example. This could potentially have induced an upward bias 

in our results. To investigate and test for selective reporting and/or small-study effects,29 we con-

ducted three publication bias tests that are suitable in the presence of dependent effect sizes, as 

suggested by Rodgers & Pustejovsky (Rodgers & Pustejovsky, 2021). All these tests were based 

on either modified sampling variance components or transformed effect size estimates to remove 

the artificial correlation between the standardized mean differences and their standard errors 

(Pustejovsky & Rodgers, 2019). Third, missing values in moderator variables in meta-analysis is 

a prevailing issue in almost all meta-analyses (Pigott, 2019) since studies rarely report all relevant 

information required by the reviewers. This potentially compromises the credibility of subgroup 

and meta-regression analyses. To reduce this potential bias, we applied multiple imputation tech-

niques (Rubin, 1987; Van Buuren, 2018), which has been shown in most case to be reliable when 

less than 50 percent of the relevant information is missing in meta-analysis data (Diaz, 2020; 

Schauer et al., 2021). Yet, it cannot remove all bias, but it might be a better solution than its alter-

native and might still produce useful information in terms of estimating/indicating potential causal 

signs (Cook et al., 1992).  

 
29 i.e., ”the tendency for the smaller studies in meta-analysis to show larger treatment effects” (Sterne et al., 2005, p. 

75). 
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Challenge 4: Developing and evaluating statistical methods for meta-analysis of dependent 

effect sizes  

During my/our endeavor to conduct a state-of-the-art meta-analysis, I/we encountered the meth-

odological boundaries of meta-analysis of dependent effect sizes when trying to conduct power 

analyses for the statistical models applied in our review. My first response to this challenge was to 

approximate power by applying Monte Carlo Simulation30 based on pilot data, as similarly sug-

gested by Morris et al. (2019) and Pustejovsky (2019a). From this basis, I began approximating 

power and developing traffic light power plots (see Figure 5 in Chapter IV) for the correlated-

effects (CE) models (Hedges et al., 2010b; Tipton, 2015; Tipton & Pustejovsky, 2015), using rel-

evant pilot data from a previous meta-analysis about the effects of co-teaching on student achieve-

ment (Khoury, 2014, pp. 74–76).31 However, using simulation to generate power approximations 

is a resource-intensive method that might take weeks to conduct, even with access to very powerful 

computers, strongly restricting the general use of this method. I, therefore, consulted James E. 

Pustejovsky and Terri D. Pigott to investigate the viability of using simulation to approximate 

power for meta-analysis of dependent effect sizes. From these discussions, it was clear that a sim-

pler method could be developed, and we began to work on the second article of the thesis. Hereto, 

Pustejovsky developed and provided the new approximation formulas, and we then instead used a 

part of my original simulation study to evaluate the performance of these new approximations for 

the CE-RVE and CHE-RVE models. We primarily opted to evaluate the approximation via a sim-

ulation study because these studies are considered to be “an invaluable tool for statistical research, 

particularly for the evaluation of new methods and for the comparison of alternative methods.” 

(Morris et al., 2019, p. 2074). Besides statistically evaluating the newly developed power approx-

imation formulas, we also wanted to conduct the simulation study because it was at that time yet 

unknown how original power approximation, developed by Hedges & Pigott (2001), performed in 

terms of predicting power for models handling dependent effect sizes.   

30 Defined as, “computer experiments that involve creating data by pseudo-random sampling from known probability 

distributions” (Morris et al., 2019, p. 2074). 
31 Since we changed our models during the conduct of our review, these power analyses were omitted from the final 

material. 
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Performance assessment 

To adequately evaluate and test the performance of the new and old power approximations meth-

ods, we used the average rejecting rate32 for each set of replication as the main performance crite-

rion (Joshi & Pustejovsky, 2020; Morris et al., 2019) to be compared to the power approximated 

from the formulas. To explain this procedure, let 𝐾 be the number of iterations for each condition 

of design parameters33 and 𝑝𝑘 be the 𝑝 value of simulation/iteration 𝑘, for 𝑘 = 1, … , 𝐾. Then the 

definition of the rejection rate for a specific level-𝛼 is given by (Joshi, 2021)  

 

𝜌𝛼 = Pr(𝑝𝑘) < 𝛼 

 

The rejection rate and power for each set of simulated design factors are given by 

 

𝑟𝛼 =
1

𝐾
∑ 𝐼(𝑝𝑘 < 𝛼)

𝐾

𝑘=1

  

 

Furthermore, we calculated the Monte Carlo Standard Errors (MCSE) to encapsulate the uncer-

tainty in the estimation of the rejection rate. These are given by (Joshi & Pustejovsky, 2021; Morris 

et al., 2019)  

 

𝑟𝛼𝑀𝐶𝑆𝐸 = √𝑟𝛼(1 − 𝑟𝛼)/𝐾  

 

We calculated the rejection rate and power for 𝛼 = .01, .05, and .1 (we only concentrated on the 

conventional level-𝛼, i.e., 𝛼 = .05), and for each set of conditions/design factors, K = 4000. 

 

 

 
32

 Defined as: “the rejection rate of a hypothesis test captures the proportion of times the p-value is below a specified 

α level—that is, the proportion of times we reject the null hypothesis. When the specified effect size is zero, we can 

examine Type 1 error rates and when the magnitude of the effect is greater than zero, we can examine power” (Joshi 

& Pustejovsky, 2021). 
33 We simulated 768 unique conditions (see all design factors in Table 2 in Chapter III). Furthermore, we applied a 

data-generating process in which the true error structure followed the correlated-hierarchical effects (CHE) working 

model from Equations (2). 
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Using graphs to evaluate the performance 

Graphical displays were the main method used to investigate patterns for the Type I error rates and 

power for meta-analysis of dependent effect sizes (see Figures 2-4 in Chapter III), mainly because 

“[the] primary advantage of graphical displays of performance is that it is easier to quickly spot 

patterns (…) but also because “it becomes possible to present raw data estimates (…) as well as 

performance results summarizing them” (Morris et al., 2019, p. 2090). By combining facet grid 

plots from the ggplot2 R package (Wickham, 2016) with different colors, shapes, and line types 

for different design factors, we were able to illustrate patterns that would otherwise have been 

difficult to tabulate or estimate (Pustejovsky, 2017).  

Challenge 5: Making complex methods accessible to applied reviewers 

A major barrier to the general applicability of the newly developed power approximation formulas 

is that they bear on a range of assumptions of different complexity. Hereto, no clear guidelines 

were developed in the second article of the thesis, potentially restricting the use of these methods 

even further. It was, therefore, a major challenge of the thesis to make these rather complex meth-

ods accessible to a broader audience of researchers. Therefore I developed the POMADE R pack-

age to make the implementation simple for other researchers. The advantage of the package solu-

tion is that it can easily be shared and provides simplified functions for the power approximations 

and for plotting the power estimates across different assumptions put forward by the reviewers. In 

this regard, I spent quite some time innovating the traffic light power plot developed in the third 

article of the thesis so that applied reviewers can conduct power analyses across a range of different 

assumptions about their model while simultaneously illustrating the model and conditions they 

most likely expect to find. As with the simulations study, the combined use of facet grid plots and 

different colors, shapes, and line types for different design factors play a major role in encompass-

ing both aims of the traffic light power plot (see Figure 5 in Chapter IV). 

However, it should be noticed that still more work is needed in terms of making power 

approximation more accessible to reviewers since not all researchers use R. Future directions could 

profitably focus on the development of a Shiny application (Wickham, 2021), allowing reviewers 

to have a point-and-click solution.  
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7. Summary and Discussion of Findings 

In this final section, I will cover the main scientific contributions, discuss the limitations, and point 

to future directions related to each of the three enclosed articles of the thesis. Since the three chap-

ters of the thesis all represent stand-alone articles that provide main contributions to different areas 

of social science, i.e., education, statistics, as well as guideline and software developments, these 

expositions are outlined separately for each article. However, all articles share the common aim of 

overcoming and improving the conduct of systematic reviewing and statistical meta-analysis in 

education and beyond with various means that are described below.  

 

Article 1 (Chapter II) 

The first article of the thesis presented in Chapter II represents a large-scale systematic review and 

meta-analysis of the effects of collaborative models of instruction on student achievement. The 

article was motivated by the curiosity to challenge, in part, the extensive use of narrative syntheses 

in previous reviews regarding co-teaching (see Table S1 in Chapter II) and, in part, the assumption 

that the research base regarding the connection between student achievement and co-teaching 

should be scarce. Hereto, the article makes several different contributions of both theoretical and 

methodological concerns. The first contribution of the article is to show that many more studies 

are available than previously anticipated. Specifically, we found 128 treatment and control group 

designed studies, of which 52 were excluded due to critical risk of biases according to the Cochrane 

risk of bias tools. In particular, we found more studies within all historical periods previously 

reviewed. In total, we meta-analyzed 76 studies, including 96 independent samples of students and 

280 short-term effect sizes.34 Unlike previous meta-analyses of co-teaching, 86% of the included 

effect sizes in our meta-analysis were either covariate or pretest-adjusted, significantly reducing 

the potential bias from confounding from included non-randomized studies (Morris, 2008). Next, 

the review adds contributions to the understanding of the mean effect and the differential effects 

of collaborative models of instruction across moderators of either theoretical or methodological 

concern. We found a moderate, positive, and statistically significant mean effect of 𝑔̅ = 0.11, 95% 

CI[0.035, 0.184] of collaborative instruction compared to single-taught controls. Next, we showed 

that the effects of collaborative models of instruction are generally robust across most subgroup 

 
34 i.e., effect sizes based on outcomes measured less than three months after the end of the intervention.  
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analyses. Of specific theoretical interest is our finding that the effect does not hinge on the two-

teacher composition, starkly contradicting assumptions made in the co-teaching literature, assert-

ing that collaborative teaching only works under narrow conditions involving formally educated 

special education teachers35 (Cook & Friend, 1995; Friend, 2008). In this regard, we argue that the 

scalability of collaborative models of instruction might be easier than often assumed since non-

formal teacher-educated assistants are probably easier to recruit and will, in most cases, induce 

lower wage costs. Furthermore, we also showed that the effect does not vary across factors that 

were considered in the literature as critical pre-conditions for the effectiveness of co-teaching.  

With regard to methods, the article aimed to improve on prior meta-analyses of collabora-

tive models of instruction by properly accounting for various dependencies among effect sizes 

coming from studies reporting multiple eligible results. To this end, we used CHE-RVE models 

(Pustejovsky & Tipton, 2021) with the objective of underpinning the trust of the detected effects. 

Moreover, a side-effect of accounting for dependent effect sizes was that it maximized the use of 

all relevant information retrievable from the included studies compared to methodological ap-

proaches including one effect size per study only, as done in two out of the three previous meta-

analyses of collaborative models of instruction (i.e., Murawski & Swanson, 2001; Willett et al., 

1983). Finally, all parts of the review have been open sourced in order to overcome the previous 

critique directed at meta-analysis for being intransparent (Maassen et al., 2020). 

 

Limitations 

Although we aimed to conduct a comprehensive systematic review, including a state-of-the-art 

meta-analysis, the article has several limitations. The most obvious limitations of the review are 

that it only studies the effects of student achievement and that it is unable to test a range of mod-

erator factors anticipated in the co-literature to be all-important for the effectiveness of co-teach-

ing. Moreover, many of the included studies might have low internal validity36 because the imple-

mentation of the intervention was often poorly documented and because it was uncertain how con-

founding factors were controlled—however, most studies controlled for baseline differences 

 
35 Such as speech-language clinicians, reading specialists, bilingual teachers, or occupational therapists. 
36 i.e., “[t]he validity of inferences about whether observed covariation between A (the presumed treatment) and B 

(the presumed outcome) reflects a causal relationship from A to B as those variables were manipulated or measured.” 

(Cook et al., 2002, p. 38) 
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between the treatment and control groups, which to some degree reduces this issue. In addition, 

most studies were conducted in the U.S., with the rest representing educational systems of high-

income countries only (The World Bank, 2022). This potentially restricts the generalizability of 

our findings to other school contexts, such as school systems in low and middle-income countries.  

 The article also has some methodological limitations. Some parts of the review were single-

coded or -rated, potentially inducing some degree of bias in the information going into the meta-

analysis. However, we strived to accommodate these issues by applying a range of quality checks 

(as described in the above Methodology Section), for example, by conducting quality tests of the 

accuracy of the most complex effect size calculations. It is also important to note that we ensured 

that the single-coded and -rater procedures only could have an impact on internal errors. In other 

words, all study exclusions were always done with an agreement between two authors to ensure 

that we did not exclude relevant studies. Finally, the publication bias tests that we utilized all have 

limitations, which means that they are either too conservative or liberal in terms of controlling the 

nominal Type I error rate (Pustejovsky & Rodgers, 2019; Rodgers & Pustejovsky, 2021). 

 

Future direction for reviews and meta-analysis of collaborative models of instruction 

While we find a robust moderate effect of collaborative models of instruction on student achieve-

ment, future meta-analyses should concentrate on investigating the effect of collaborative instruc-

tion on other outcomes, such as student well-being, and social and behavioral measures, since 

student achievement are clearly not the only educational reason for introducing collaborative mod-

els of instruction.  

Next, it will be critical to keeping updating the review (Campbell Collaboration, 2019; 

Elliott et al., 2021). Since we finalized our last literature searches in June 2020, new eligible studies 

have already surfaced that need to be included in future reviews (see, for example, Hemelt et al., 

2021; Jones & Winters, 2022). We expect to update the review within a five-year period, as sug-

gested by the Campbell Collaboration (2019). 

 Our review further points to some vital future directions for primary research regarding the 

effects of collaborative instruction. Certainly, more experimental studies are needed in the co-

teaching literature. Currently, it is primarily based on quasi-experimental and observational studies 

with a potentially lower internal validity. Hereto, it is pivotal to investigate the differential effects 
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and contexts that might have a moderating impact on the efficacy of collaborative models of in-

struction (Bryan, Tipton, & Yeager, 2021; Hedges, 2018; Tipton & Hedges, 2017). Particularly, it 

is critical to gain a better understanding of the differential effect between general and special edu-

cation students since the evidence provided in our review was ambiguous. Finally, more focus 

should also be placed on investigating the long-term effects, and the cost-benefit of collaborative 

models of instruction since this type of research is generally absent in the literature.  

Article 2 (Chapter III) 

The chief contribution of the second article of the thesis presented in Chapter III is that it introduces 

new power approximations formulas for tests of the mean effect size from the most common mod-

els to handle dependent effect sizes, i.e., the CE model, CHE models, and MLMA models. These 

were developed from the need I experienced during my research on the first article of the thesis. 

However, this article provides several further contributions. Besides developing new methods for 

power approximation in meta-analysis, it also evaluated the performance of the new and more 

complex formulas via a comprehensive simulation study. This is a procedure that has not previ-

ously been used for assessing the performance of power approximation in meta-analysis (Hedges 

& Pigott, 2001, 2004). In effect, we show that the original power approximation based on the 

assumption of independent effect sizes performs inadequately to predict power for models using 

study-mean effect sizes, although these are independent. Most importantly, we show that the new-

developed approximation formulas can close to exactly predict the power of the CE, CHE, and 

MLMA models when based on reliable pilot data and when the models are correctly specified. In 

this regard, we further show that making power approximations based on balanced assumptions 

(i.e., that the average sampling variance and the number of effect sizes per study are constant across 

studies), in the presence of substantial dependencies among effect sizes, overestimates power by 

10-20%. Moreover, the article compared the nominal Type I error rates across the eight most com-

mon models for handling dependencies among effect sizes, showing that models involving RVE 

(i.e., CE-RVE, MLMA-RVE, and CHE-RVE models) perform most adequately, independently of 

the number of included studies. Lastly, we compared the relative power between the models using 

RVE, showing minor power gains for the CHE-RVE model when the true data generating model 

follows the correlated-hierarchical effects structure. However, these are only small gains when the 

true mean effect size is small or moderate, and the main takeaway from these results is that meta-
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analysts should routinely guard against misspecification via RVE to ensure the accuracy of meta-

analytical results, backing up previous simulation study findings (Fernández-Castilla et al., 2020). 

 

Limitations 

The main limitation of the new approximation functions is that they are complex, making a clear 

barrier to the applicability of the methods. This was the main reason for developing the third article 

of the thesis; see the exposition below. Furthermore, our simulation study does have a number of 

limitations. Although the approximation formulas perform adequately when based on pilot data, 

this can also induce bias in the approximations if the utilized pilot data is not representative of the 

target population of studies. Furthermore, we only investigated the performance of the approxima-

tions from one data generating mechanism, i.e., the CHE structure, and we did not investigate how 

the approximation functions perform when they are misspecified, such as assuming 𝜌 = 0.8, when 

the true 𝜌 is 0.2. Finally, the applicability of the approximation formulas is restricted by their main 

focus on standard mean differences (Hedges, 1981)—though these can be used for Fisher’s z-

transformed correlation coefficients, as well. 

  

Future directions for approximation formulas for meta-analysis of dependent effect sizes 

The second article of the thesis yields at least five suggestions for future research for a priori 

approximation in meta-analysis. First, future research should focus on power approximations for 

other measures than standardized mean differences such as log odds ratios or relative risk ratios. 

Second, it would be beneficial to investigate how to approximate power for subgroup analyses in 

meta-analysis of dependent effect sizes, as Hedges & Pigott (2004) did for the original independent 

power approximation formulas. Third, in a similar vein, more knowledge is needed to understand 

how the original power approximation formulas empirically perform when used for predicting 

truly independent effect sizes, i.e., when all studies yield one effect size only. Forth, as indicated 

above, it would be interesting to understand how the newly developed formulas perform when they 

are mis-specified. Fifth and finally, since power analysis is based on arbitrary cutpoints for the 

power and significance levels alike, it might compel researchers to make binary interpretations of 

the effectiveness of given interventions. Thus, future research should revolve around developing 

precision approximation, i.e., an analysis that aims to approximate the number of studies needed 

to obtain a certain width of the confidence interval with a given probability (Rothman & 
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Greenland, 2018). Currently, this type of analysis is entirely absent from the field of meta-analysis 

and could potentially overcome the narrow focus on statistical significance (Lakens et al., 2018).  

Article 3 (Chapter IV) 

While the second article concentrates on the technical development and quality assurance of power 

approximations for meta-analysis of dependent effect sizes, it did not tackle the practical chal-

lenges that applied reviewers potentially will meet for obtaining the relevant quantities required to 

approximate power reliably. Therefore, the third article of the thesis aims to make three contribu-

tions in this regard. First, it contributes with common guidelines for how and where applied re-

viewers can find the relevant information needed to conduct reliable power approximations for 

meta-analysis of dependent effect sizes. Second, it introduces the POMADE R package, whose 

main contribution is to provide functions for conducting and plotting power approximations as 

well as the minimum detectable effect size (MDES) and the number of studies needed to find a 

given effect size considered to be the smallest of practical relevance, with preset levels of statistical 

power and significance as well as with and across prespecified data and model conditions. Third, 

it introduces what we coin the traffic light power plot that enables applied reviewers to conduct 

and plot power across a range of possible data and models scenarios while at the same time allow-

ing reviewers to clarify which assumptions and design factors they expect to find (see Figure 5 in 

Chapter IV). A notable advantage of the POMADE plot functions is that they can generate infor-

mation in five to ten minutes (using only one core on an average computer), which would otherwise 

approximately take more than a week to obtain via simulation on a computer/server with 64 cores 

and 376 RAM. Hopefully, the speed of the new methods may strongly increase their applicability. 

Limitations 

Although the article develops simplified functions to conduct power analyses for dependent effect 

sizes, the barriers to the use of these are that the functions remain rather complex and depend on 

researchers having access to relevant pilot data. Therefore, thorough documentation will be a key 

feature of the final package. Furthermore, the flexibility of these power approximations might 

come with the potential risk that researchers choose their model based on these analyses and not 

from substantial information related to the research topic under review. For example, it could be 

the case that reviewers would select the assumed sample correlation (𝜌) based on the value yielding 
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more power and not on the value most realistic in practice. However, it is important to remember 

that the power approximations are based on the assumption that the model is correctly specified. 

Therefore, reviewers might potentially lose power if they mis-specify their model, for instance, by 

setting 𝜌 = 0, when it, in fact, is 𝜌 = .8 (Pustejovsky & Tipton, 2021). 

 

Future directions for guidelines and software developments for power analysis for meta-analy-

sis of dependent effect sizes  

The fact that the new POMADE package can only be used in the statistical learning environment 

R restricts its use. Therefore, future package improvements should focus on making the package 

functions available to researchers not applying R. For example, it could be an idea to introduce a 

Shiny application (Wickham, 2021) with simple point-and-click solutions. Furthermore, it could 

also be profitable for the community if packages were developed for other statistical programs as 

well, such as Stata or jamovi. 

 Finally, the guidelines put forward in this article are most easily implemented when meta-

analysts have access to reliable and relevant pilot data. This makes future demands for the meta-

analysis community to embrace and implement open science and open data procedures if prospec-

tive power analyses of meta-analyses should become common practice in systematic reviews.  
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Abstract 

Co-teaching and related collaborative models of instruction are widely used in primary and sec-

ondary schools in many school systems. This systematic review and meta-analysis investigated 

their effects on students’ academic achievement and how these effects are moderated by theoreti-

cally and practically relevant factors. Although previous research and reviews assert that the evi-

dence base is scarce, we found 128 treatment and control group designed studies from 1984 to 

2020. We excluded 52 studies due to critical risk of bias via Cochrane's risk of bias assessment 

tools and conducted a meta-analysis of 76 studies yielding 280 short-term effect sizes, of which 

82% are pretest-adjusted. We found a moderate, positive, and statistically significant mean effect 

of 𝑔̅ = 0.11, 95% CI[0.035, 0.184] of collaborative instruction compared to single-taught controls, 

using the correlated-hierarchical effects (CHE-RVE) model. From moderator analyses, we found 

that collaborative instruction yields effects of mostly the same size for interventions with trained 

teachers and assistants without teacher education. This implies a potential for the expansion of the 

intervention at lower costs than often expected. Moreover, factors that are highlighted in the co-

teaching literature as preconditions for the effectiveness of collaborative instruction did not explain 

much variation in effect sizes. Finally, we did not find any clear evidence for publication bias or 

small study effects. Notably, a large number of the studies that we could draw upon were non-

randomized studies. Therefore, future research could profitably concentrate on conducting more 

rigorous experimental research, especially relevant co-teaching interventions.  

 

KEYWORDS: co-teaching, teacher assistants, student achievement, meta-analysis, CHE-RVE 

model  
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Introduction1 

Collaborative models of instruction have been applied since the 1950s (Willett et al., 1983), but 

their popularity has increased over the last decades in many school systems throughout high-in-

come countries (Andersen et al., 2018; Blatchford et al., 2011; Friend, 2008; Muijs & Reynolds, 

2003). Such models comprise co-teaching between general and special education teachers, but also 

the use of teacher assistants and paraprofessionals. This development has been fueled by different 

legal acts and declarations (e.g., IDEA, 2022; NCLB, 2002; UNESCO, 1994) that warrant the right 

for all students to receive high-quality general education, regardless of differences and difficulties. 

Furthermore, collaborative models of instruction are popular since they are more flexible com-

pared to alternative options for improving the student-teacher ratio, such as class size reduction 

(Filges et al., 2018), or increased instruction time (Andersen et al., 2016; Kidron & Lindsay, 2014). 

In addition, the seemingly intuitive appeal, assuming that two educators can transcend what can 

be done alone by a single teacher, might also have contributed to their expansion (Bacharach et 

al., 2010; Friend, 2008). However, still very little is known about the effects of collaborative mod-

els of instruction on students’ academic achievement, not to mention how the effects vary across 

contexts, such as different subjects, grade levels, and/or student groups. Furthermore, there exists 

a particular lack of research and reviews investigating the differential effect between various two-

teacher instruction models, e.g., between co-teaching and teacher assistant interventions. In order 

to overcome this knowledge gap, this systematic review includes and concentrates on various ver-

sions of collaborative instruction interventions, which allows us to understand and contrast differ-

ences in effects between the various collaborative models of instruction. Previous research synthe-

ses often refer to a limited evidence base as the main reason for this lacking understanding of the 

effects of collaborative models on instruction on student achievement (Cook, McDuffie-Landrum, 

Oshita, & Cook, 2017; Friend, 2008; Iacono et al., 2021; Murawski & Swanson, 2001; Reinhiller, 

1996). Yet, we aim to challenge this view by demonstrating that there exists a large body of liter-

ature, including numerous studies with a design that is appropriate for drawing causal conclusions. 

Despite applying more restricted inclusion criteria than prior reviews, we found 128 studies pub-

lished between 1984 and 2020. Based on these publications, we investigated the overall mean 

1
Find the pre-registered protocols and codes for reproducing all parts and analyses of this paper at 

https://osf.io/fby7w/. 
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effect of collaborative models of instruction on student achievement, but also how these effects 

varied across focal moderators that were highlighted in the methodological and theoretical litera-

ture as important factors to explain the differential effects of collaborative models of instruction. 

 

Definition of Terms and Mechanisms for the Effect of the Intervention 

The underlying definitions of this review follow the common use in the literature as we observed 

it during the literature screening process. Inspired by Welch et al. (1999, p. 38), we broadly define 

collaborative instruction as the simultaneous presence of two or more educators/adults working 

together and sharing responsibilities of instructional and/or behavioral interventions. This defi-

nition encompasses all of the included compositions of two-teacher instruction that are specified 

further in this section. Importantly, it is neither restricted to certain types of two-teacher composi-

tions/teacher actions nor to specific groups of students. This way, we aim to include personnel 

without formal teacher education, i.e., paraprofessionals, pedagogues, or parent volunteers.  

Through our literature search, we identified three versions of collaborative models of in-

struction that fall under the overall definition, but which were largely separated from each other in 

the literature. These were studies regarding co-teaching, teacher assistants/aides, and team teach-

ing. Below we outline the specific definition of each collaborative instruction model as well as the 

causal theory behind the specific model.  

 

Co-Teaching 

The largest share of literature that we located refers to co-teaching interventions. We define co-

teaching in line with Cook and Friend (1995, p. 2) as “two or more professionals delivering sub-

stantive instruction to a diverse, or blended, group of students in a single physical space.” The 

term “professionals” in this regard refers to the collaboration between a formally educated general 

education teacher and a formally educated special education teacher, such as a speech-language 

clinician, reading specialist, bilingual teacher, or occupational therapist. The theoretical foundation 

of the co-teaching literature often highlights that co-teaching is context-dependent and only works 

effectively under narrow conditions. For example, Friend (2008, p. 17) states that “[c]o-teaching 

partnerships require more than a casual agreement to work together in the classroom. For co-teach-

ing to be effective, logistics must be addressed so that teachers’ schedules permit co-planning, 
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teachers’ working relationships and classroom roles must be addressed, and administrative support 

must be in place”. Hence, common planning time is assumed to facilitate clear teacher roles by 

allowing the general and special educators to coordinate how to organize and (equally) share in-

struction time. Common instruction and equally shared instruction time are, in turn, assumed to be 

vital components for improving student learning by making full and complimentary use of the 

professional competencies of the general and the special educator, e.g., by combining the general 

teacher’s in-depth knowledge of the curriculum and the specialized knowledge of the special edu-

cation teacher about customizing the instruction to the needs of the individual student. For the 

same reason, the co-teaching literature frequently presumes that co-teaching following the models 

‘one-teach-one-assist’ or ‘one-teach-one-observe’ are ineffective (Friend, 2008; Scruggs et al., 

2007) since they do not take full advantage of the competencies of both educators. Hereto, it is 

emphasized that co-teaching should ideally be executed by using a variety of co-teaching models 

to work most effectively (see Cook & Friend, 1995, pp. 5–6 for an overview of all co-teaching 

models and support for this hypothesis). 

Theoretical discussions and qualitative research related to the co-teaching literature fur-

thermore suggest that voluntary participation and sound working relationships between the col-

laborating teachers keep the co-teachers engaged in doing effective co-teaching (Cook & Friend, 

1995; Friend, 2008; Scruggs et al., 2007).  

As a quite concrete guideline, it is occasionally suggested that co-teaching works best when 

provided to students for two 60-90 minutes sessions per week (Friend in Stanek, 2017). Hereto, it 

is also hypothesized that co-teaching only works properly when provided for more than a year 

since it is a heavy developmental type of program, which takes time to learn for the co-teachers 

(see Friend in Dafolo, 2019).  

Besides the hypothesized propositions mentioned above, the co-teaching literature also ex-

pects a positive effect from the improved student-teacher ratio (Cook & Friend, 1995, pp. 3–4)—

like other interventions such as class-size reductions (see Filges et al., 2018, and Supplementary 

Figure S28 for the causal theory behind the models). One hypothesis for why a reduced student-

teacher ratio might increase student outcomes is that it can reduce the number of disciplinary prob-

lems, which consequently increases instruction time and thus improves learning conditions. An-
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other hypothesis is that students are given a more appropriate and differentiated/personalized in-

struction, which allows for a deeper presentation of the content as well as increased student en-

gagement.  

 

Teacher Assistants/Aides 

Another set of collaborative models of instruction found in the literature search was teacher assis-

tants/aides interventions. We define the teacher assistant(s) (TA) intervention as an in-class col-

laboration between a general education teacher and adults/paraprofessional educators without a 

formal teacher education such as pedagogues, (voluntary) parents, etc. (Blatchford et al., 2011). 

These models can, to a large extent, be seen as a special case of co-teaching in which the primary 

instruction models used are ‘one-teach-one-assist’ and ‘one-teach-one-observe’ but premised upon 

personnel without formal teacher education. Thereby, the teacher roles for this model are assumed 

to be clearer since the support personnel always takes an assisting and secondary role relative to 

the general teacher. The mechanisms for the impact of TAs overlap with the reasoning behind the 

impact of reducing student-teacher ratios, as also presented in the co-teaching literature. The larg-

est difference is that the TA literature assumes that shared instructional responsibility and the for-

mal education of the second teacher is not a prerequisite for the effectiveness of the intervention. 

In the literature, TAs are assumed to have both an indirect and a direct impact on student 

achievement (Blatchford et al., 2011). The indirect effect is that TAs release the general teacher 

from routine and clerical tasks and thus increase the net instruction time, which in the end might 

benefit student achievement. The direct effect of TAs is assumed to work through multiple com-

plementary mechanisms (Blatchford et al., 2011; Muijs & Reynolds, 2003, pp. 221–222). For ex-

ample: 

 

• TAs can function as role models that show students that the content is valued by adults 

other than the teachers. 

• TAs provide the opportunity for more adult interaction, which can scaffold student learn-

ing, provide more in-depth learning, and ensure that students are more active.  

• TAs can facilitate that students spend more time focused on tasks by improving behavioral 

issues and thus increase students’ learning time. 
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• TAs can facilitate more concentrated whole-class activities by improving classroom man-

agement.

• TAs can increase the amount of immediate feedback and praise given to all students, boost-

ing the students’ confidence and motivation, working habits, and willingness to finish off

tasks.

Team Teaching 

Lastly, we found a set of studies including compositions of two-teacher instruction not falling into 

the categories presented above, i.e., two regular/general and formally educated in-class teachers 

(e.g., two math teachers). We refer to this category as team teaching2, which we define as two or 

more general education teachers sharing instructional and/or behavioral responsibilities of stu-

dents in the same physical space. Since this model is not widespread in the literature, a specific 

causal theory for this model of instruction is scantly developed. However, we assume that it works 

similarly to the two other models, i.e., that it can reduce disciplinary problems ensuring more in-

structional time as well as increasing student-teacher interaction allowing students to receive more 

personalized instruction. An advantage of this model over the other two, however, could be that 

students receive a broader and more in-depth content knowledge due to the potentially comple-

mentary knowledge of the two general teachers. A further benefit might be that it is less likely that 

one of the teachers is ascribed the assisting role due to a lack of content knowledge, which often 

seems to happen for the special education teacher (Scruggs et al., 2007). This might even be more 

pronounced in later grades when more advanced content knowledge is required. 

Previous Reviews 

The systematic reviews most closely related to our review are Murawski & Swanson 

(2001), Khoury (2014), and Willet et al. (1983). Common for all of these reviews is that they 

investigated the effects of collaborative models of instruction on student achievement outcomes 

by conducting systematic reviews, including statistical meta-analyses.  

2 This definition should not be confused with Cock & Friend’s (1995) “team teaching” model. 

102



Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 

 

 

MS01 investigated the effects of co-teaching on various outcomes measures from students 

with special needs, including academic achievement. They found a large3 mean effect size of 0.40. 

However, this must be seen against the background of a rather small sample of six studies, of 

which five were single-case pre-posttest studies, which is a less conservative design (Cheung & 

Slavin, 2016), meaning that it generally yields larger effects. MS01 did not allow studies to con-

tribute with multiple effect sizes, which, among other things, excluded the possibility of further 

investigating the differential effects of co-teaching across covariates varying within studies such 

as outcome measures.  

The only prior review that applied meta-regression was authored by Khoury (2014), and 

the review investigated the effect of co-teaching on academic achievement outcomes among stu-

dents with special needs. It found partly a relatively large mean effect size of 0.28, and partly that 

the effect of co-teaching did not vary across school levels or subjects, and neither about study types 

or the type of comparison group. Finally, the review suggested that the effect was stronger the 

longer students received co-teaching. However, these analyses were based on the assumption of 

independence among effect sizes, which is likely violated when studies report multiple outcomes. 

As a consequence, the weighting schemes applied might likely be error-prone and yield models 

that do not adequately control for the nominal Type I error rate (Becker, 2000; Hedges et al., 2010; 

Van den Noortgate et al., 2013).  

As the only prior review, Willet et al. (1983) included all types of in-class two-teacher 

instruction studies conducted from 1950 to 1983 and found a small, moderate mean effect size of 

0.06 on students’ science achievement. However, Willet et al. neither investigated moderating ef-

fects of collaborative teaching nor allowed studies to contribute with multiple outcomes, excluding 

knowledge about the differential effects of collaborative models of instruction.  

Both Khory and Willet et al. included quasi-experimental (QES) and observational (OBS) 

comparison studies but without ensuring or investigating the comparability of the intervention 

groups at baseline. This can potentially have jeopardized the accuracy of the mean effect size es-

timation.  

 
3 When we interpret effect sizes throughout the paper, we use Kraft’s (2020) empirical guidelines and benchmarks 

for interpretating effect sizes related to causal research on education interventions with standardized achievement 

outcomes.  
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Narrative reviews and syntheses 

Most commonly, previous reviews of research on collaborative models of instruction (see Supple-

mentary Table S1 for a list with an overview [online only]) have narratively synthesized studies 

applying both qualitative, mixed, and quantitative methods. They also included a mix of studies 

with different research designs, such as single-case pre-posttest and treatment and control group 

designed studies, and different outcomes, such as behavioral, social, emotional, and learning out-

comes. A widespread conclusion across previous reviews is that research regarding the effects of 

collaborative instruction on student achievement is limited but that, based on what is known from 

the few studies, in-class collaboration seems to have a positive impact on learning. Prior reviews 

have typically concentrated on one set of two-teacher compositions as well as one sample of stu-

dents only, e.g., only the effects of co-teaching on outcomes related to special needs students.  

One review, authored by Scruggs et al. (2007), is purely based on qualitative research. 

From interviews with and observations of co-teachers, they found that special teachers frequently 

report that they are given subordinated assistant roles and that they think administrative support is 

pivotal to facilitate the relevant training and time needed for substantial co-planning and co-teach-

ing. Finally, Sollis et al. (2012) conducted a review of reviews broadly focusing on collaborative 

models of instruction and inclusion interventions. They found mixed evidence of the effectiveness 

of co-teaching. However, this meta-review is primarily dominated by other types of interventions 

that are beyond the scope of this review.  

 

Contribution of the Review 

This review goes beyond previous review studies in various ways. First, we aimed to fill the long 

synthesis gap since 1983, when the first comprehensive review of collaborative models of instruc-

tion was conducted. Second, we apply more clear-cut inclusion criteria to ensure that we draw on 

the most reliable research for causal inference by only concentrating on quantitative studies with 

a treatment and control group design and only studies that measure students’ academic achieve-

ment. In contrast to previous reviews, we conducted comprehensive risk of bias assessments, and 

we only included QES and OBS if they either reported pretest scores or had reliably ensured base-

line equivalence among treatment and the control groups, for instance, by using matching tech-

niques or controlling for focal covariates (see the full list of focal covariates in our protocol). Third, 
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we aimed at a more comprehensive review combining and testing theoretically and empirically 

similar concepts. Therefore, we included studies with different compositions of two-teacher in-

struction as well as different samples of students comprising general education and special needs 

students to understand the differential effects of collaborative models of instruction. To overcome 

limitations encountered in previous reviews investigating differential effects of co-teaching, we 

have used state-of-the-art meta-analysis methods to handle dependent effect sizes, i.e., studies con-

tributing multiple outcomes (Joshi et al., 2022; Pustejovsky & Tipton, 2021; Rodgers & 

Pustejovsky, 2021; Tipton & Pustejovsky, 2015). Fourth, we aimed to improve on previous meta-

analyses by also accommodating common critiques against effect size calculation in meta-analysis 

of being obscure (Maassen et al., 2020) by ensuring unprecedented transparency. Concretely, this 

means that all parts of the review, including effect size calculation and statistical analyses, are 

accessible at https://osf.io/fby7w/.  

 

Methods 

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA, 

Moher et al., 2009; Page et al., 2021) reporting guideline and the recommendations put forward 

by Pigott & Polanin (2019). Supplementary materials include completed PRISMA checklists. The 

review has been pre-registered at the Open Science Framework (OSF), see https://osf.io/ur2bs 

[The link is currently inactive due to an embargo; it will be activated before publication. Find 

blinded versions of the two linked protocols at https://osf.io/fby7w/].  

 

Inclusion and Exclusion Criteria 

Study designs 

To draw on the most reliable research for causal inferences, we included treatment-control group 

designed studies only. Hence, single-case pre-posttest designed studies were excluded. Included 

were (cluster and/or blocked) randomized controlled trials (RCTs), quasi-experimental studies 

(QES), and observational studies (OBS). We characterize RCTs as studies in which the researchers 

both control the random assignment of students into the treatment and control groups (either indi-

vidually or in clusters, e.g., classrooms or schools) and initiate the implementation of the interven-

tion. QES represent studies in which the researcher(s) initiate the implementation of the treatment 

but do not randomly assign students to the intervention groups. Finally, OBS are studies where the 
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researchers neither have an influence on the implementation process of the intervention nor control 

the randomized assignment. Such studies might, however, still draw on randomization if, for ex-

ample, schools randomly assigned students to classrooms before the treatment.  

To avoid that we induce more bias than we prevent by including study designs with varying 

quality, we applied strict rules for non-randomized studies to be included (Egger, Juni, Bartlett, 

Holenstein, & Sterne, 2003). We only allowed posttest effect sizes from QES and OBS to be in-

cluded if baseline equivalence was assured. If not assured, QES and OBS either had to provide 

baseline/pretest achievement or covariate-adjusted4 measures from which we could compute pre-

test- and/or covariate-adjusted effect sizes (Taylor et al., 2021). Otherwise, we considered non-

equivalent groups studies that only reported posttest scores to be of critical risk of bias due to 

confounding. These studies were excluded via the ROBINS-I (Risk Of Bias In Non-randomized 

Studies- of Interventions) tool (Sterne et al., 2016). For further details, see the “Risk of Bias As-

sessment” subsection below.  

Intervention and control groups 

All types of collaborative models of instruction were included as long as both teachers were at 

least 18 years old and the teaching took place in-class with the educators sharing the same physical 

space (cf. “Definition of Terms”). Thus, we did not include collaborative models of instruction 

based on peer teaching or tutoring. Studies with more than two educators were allowed in this 

review, but none were found in the literature. We limited the included interventions to those with 

at least two weeks of treatment, i.e., at least ten school days. Studies where students had two teach-

ers but the instruction was executed to a group of students outside the main classroom as well as 

studies where students were divided into distinct classes that received instruction in two different 

classrooms were excluded (e.g., see Jang, 2006a, 2006b). For an overview of teacher assistant 

interventions provided outside the main classroom, which were excluded, see Farrell et al. (2010, 

p. 440).

Eligible control groups for this review can be categorized into three groups; 1) non-inclu-

sive general education single-taught classrooms, i.e., general education students only, compared 

4 Find the list of focal covariates/confounding factors in our pre-registered protocol at https://osf.io/fby7w/. 
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to general students from co-taught classrooms, 2) inclusive general education single-taught class-

rooms, i.e., a blended student composition, either compared to general and/or special needs stu-

dents in co-taught classrooms, and 3) special education classrooms such as resource rooms and 

pull-out classrooms compared to students with special needs in co-taught classrooms. We did not 

include two-teacher interventions conducted in special education school settings. Moreover, we 

did not allow collaborative teaching to be compared to single-taught classrooms using reduced 

class sizes, as in the Project STAR (Finn & Achilles, 1990). 

 

Student populations 

The eligible population sample for this review was students in grades one to twelve who attended 

primary or secondary schools, including both public and private as well as boarding schools. This 

also included special education schools as well since these functioned as control schools. We did 

not find any studies including private school settings only. Studies based on students in kindergar-

ten, vocational or post-secondary education were excluded. Overall, we included three types of 

student samples, 1) students with special educational needs and/or disabilities, 2) general education 

students, and 3) aggregated samples in which achievement outcomes were measured on a blended 

group of general and special needs students. If studies reported disaggregated measures for “at-

risk” or “low SES (socio-economic status)” students but these were not formally characterized as 

special needs students, we either amalgamated these results with the general student results, when 

possible, or interpreted the results as coming from the general education population. 

 

Country context and language 

To ensure a certain amount of comparability among the included population samples, the students 

had to come from high-income countries as defined by the 2020 World Bank Classification (The 

World Bank, 2022). To exemplify, we excluded the Iranian study by Aliakbari (2013). Further-

more, we only included documents and studies written in English, Danish, Swedish, Norwegian, 

or German. Yet, all studies in the final sample used for data extraction and effect size calculation 

were written in English.  
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Outcomes  

Due to their important role in the policy debate and their high correlation with future academic 

and labor market success (Dietrichson et al., 2020; OECD, 2016), we concentrated on academic 

achievements, such as skills in reading, writing, and mathematics. Eligible outcomes were all types 

of academic achievement tests, including state- or nationwide standardized tests, norm-referenced 

commercial tests, grades, leaving examinations, marks for the year's work, large-scale assessment 

tests, teacher-developed tests, researcher-developed tests, and textbook tests.  

We solely considered Arts, Social Science, and STEM subjects to be eligible, such as lan-

guage arts (LA), social studies, history, science, biology, and mathematics. In later analyses, we 

roughly dichotomized effect sizes into Arts & Social Science vs. STEM categories in order to 

make optimal use of all relevant outcomes and information. We excluded all practical and creative 

subjects such as music, sports, home economics, or woodwork. Notably, we allowed IQ tests to 

function as a proxy for student achievement if these were used as pretest or baseline measures. We 

divided analyses between posttest and follow-up measures. The latter was characterized as effects 

measured three months or later after the end of the intervention. If studies reported effects across 

various time points, we included all of them.  

 

Search procedures 

The search string that we developed for our electronic searches was inspired by the previous review 

studies as well as a number of recent empirical studies. It covered the different types of interven-

tions equally well, i.e., co-teaching, TAs, and team teaching. The search string is too extensive to 

be included in the main text but is documented within our pre-registered protocol at 

https://osf.io/fby7w/. We conducted an electronic search in the databases Scopus, Web of Science, 

APA PsycArticles, APA PsycInfo, Australian Education Index, Ebook Central, EconLit, Educa-

tion Database, ERIC, Periodicals Archive Online, and ProQuest Dissertations & Theses Global. 

The main source for grey literature was the database ProQuest Dissertations & Theses Global, 

which identified a large number of dissertations. Beyond this systematic search, we did a less 

systematic search using google scholar and used snowball sampling for all previous reviews and 

for all journal articles that were included in the final dataset. 
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Expert and author solicitation 

We did not contact any primary authors or experts for further study detection, although stated in 

the first protocol attached to this review. Since previous research showed that only 12% of the 

primary study authors replied to solicitations and only 0.5% of the replies contained the demanded 

information (Polanin et al., 2020; Schauer, Diaz, Lee, & Pigott, 2020), we opted to change this 

initial plan due to the seemingly low chances of a successful extension of our data.  

 

Screening procedures   

The first and second review authors conducted independent abstract and full-text screening of all 

references found during the literature search. Disagreements were resolved via discussion and con-

sensus among the authors. All screening and reasons for exclusion of references alike were con-

ducted and documented in Covidence. The Covidence repository is accessible upon request.  

 

Data extraction  

Data extraction was conducted by the first author only. For quality assurance, the data extraction 

was conducted twice for each study. As a further quality check (suggested by Campbell 

Collaboration, 2019 & Hofner, Schmid, & Edler, 2016), the third author inspected 12 of the most 

complex effect size calculations for coding errors and possible improvements.  

We specifically extracted information regarding the study, sample, context, participants, 

design, treatment and control group, outcome, and estimation characteristics. Whenever data ex-

traction or effect size calculation issues appeared, these were resolved in consensus among the 

authors. Most result data from studies reporting more than four outcome results were extracted by 

a student assistant. 

To strengthen the theoretical relevance of the review, the used data extraction scheme was 

closely developed in line with the co-teaching literature and theory (Cook & Friend, 1995; Friend, 

2008, 2017). Thus, we were able to test the hypotheses discussed in this literature empirically. We 

pilot tested the scheme on eight studies (these were Adams, 2014; Allen, 2008; Almon & Feng, 

2012; Andersen, Beuchert-Pedersen, Nielsen, Thomsen, et al., 2018; Andrews-Tobo, 2009; 

Fontana, 2005; Muijs & Reynolds, 2003; Murawski, 2006). Hereto, we optimized the data extrac-

tion scheme by reducing the number of extraction characteristics whenever certain characteristics 
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were not retrievable from the pilot studies. That, for example, led us to exclude the variable “qual-

ity of the collaboration between the collaborating teachers.” All background information and co-

variates were extracted using MS Excel, while information related to the effect size calculation 

was extracted and managed using RStudio. To accommodate the one-coder-only practice, all ex-

traction schemes, effect size calculations, and the final/complete dataset are available for critical 

inspection and future updates at https://osf.io/fby7w/. 

 

Risk of Bias (RoB) assessment 

To further assure that the accuracy of the review was not compromised by including study designs 

of varying quality, we conducted comprehensive risk of bias (henceforth, RoB) assessments for 

all effect sizes individually. Studies contributing with multiple effect sizes underwent multiple and 

potentially different RoB assessments. For example, if a study reported results across different 

types of outcomes or student samples. 

Since we amalgamated results across randomized and non-randomized studies, we applied 

the RoB 2 tool for RCTs (Sterne et al., 2019), the RoB 2 CRCT tool for cluster RCTs (Eldridge et 

al., 2021), and the ROBINS-I tool for non-randomized studies (Sterne et al., 2016). To ensure 

comparability between the three RoB assessment tools, we required that non-randomized studies 

should either provide raw data or a pre-registered protocol in order to receive a low risk of bias 

assessment due to reporting. Moreover, to align the RoB 2 tools to social science standards, we 

did not consider questions regarding blinding and double-blinding to have any significant impact 

on the overall RoB assessment.  

The RoB assessment was conducted by the first author only. However, the RoB assessment 

was also used to exclude studies with a critical risk of bias, and exclusion of these studies was 

always based on consensus between the first and the second author. In this regard, we excluded 

studies from the review as soon as they received the first critical RoB judgment for any domain in 

the ROBINS-I scheme. All conducted RoB assessments are available at https://osf.io/fby7w/ for 

critical inspection and future updates. For further details about the RoB assessment procedure, see 

section Supplementary Section S6 (online only).  
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Statistical Methods 

Effect size calculation and statistical data analyses were conducted using R 4.1.2 (R Core Team, 

2022) in RStudio (RStudio Team, 2015). For the main analyses, we used the packages metafor 

(version 3.0-2; Viechtbauer, 2010), clubSandwich (version 0.5.5; Pustejovsky, 2020b), and wild-

meta (version 0.0.0.9000; Joshi & Pustejovsky, 2022). For figure illustrations, we used ggplot2 

(version 3.3.3; Wickham, 2016). Find replication material for all statistical analyses of this review 

at https://osf.io/fby7w/. 

 

Effect size calculation 

Standardized mean differences are the effect size metric used in this review and were calculated 

via theHedges’s g estimator (Hedges, 1981). We coded effect sizes so that positive values indicated 

a treatment effect, i.e., a positive effect of collaborative instruction. We applied a broad range of 

techniques for obtaining effect sizes across the diverse set of research designs and estimation meth-

ods used in the primary studies (Borenstein, 2009; Hedges, 2007; Higgins et al., 2019; Pustejovsky, 

2016; Wilson, 2016; WWC, 2020, 2021). The majority of the effect sizes was based on either pre-

test or covariate-adjusted computation techniques (Morris, 2008; Morris & DeShon, 2002; 

Pustejovsky, 2016; Taylor et al., 2021). Calculating covariate- and/or pretest-adjusted effect sizes 

in most cases requires information about the correlation between the covariate(s) and the outcome 

measures, 𝜌𝑐𝑜𝑟, which are infrequently reported in primary studies but can be obtained from other 

measures that are usually provided (Pustejovsky, 2020a; Wilson, 2016). Whenever 𝜌𝑐𝑜𝑟 was im-

possible to derive from reported results, we imputed 𝜌𝑐𝑜𝑟 following the guideline put forward by 

the What Works Clearinghouse (2020; henceforth WWC). 

All calculated effect sizes were standardized by the total variance, here denoted as 𝑔𝑇. This 

means that all effect sizes both encompass variance from the student level as well as cluster levels 

such as the classroom and/or school levels (Taylor et al., 2021). Thus, studies reporting means and 

variability measures at one of these levels only were converted to ensure that they represent the 

same unit of analysis. i.e. 𝑔𝑇 (Hedges, 2007). This also entailed conducting approximate cluster 

bias corrections on all effect sizes coming from multi-sited studies (i.e., studies containing multi-

ple treatment and control classrooms) not accounting for the nesting of students in classes and/or 

schools (Higgins et al., 2019; WWC, 2021). All conversions were premised upon intraclass corre-

lation (ICC) values which are rarely reported in educational research. We, therefore, imputed ICC 
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values from Hedges & Hedberg (2007), as suggested by Hedges (2007), to conduct these 2-level 

conversions. To further ensure a common unit of analysis across effect sizes and to reduce unnec-

essary amounts of within-study variability, we aggregated results across subgroups and subtests if 

these were irrelevant to our moderator analyses. For a detailed description of the full effect size 

calculation procedure of the review, see Supplementary Section S1 (online only).  

Dependent effect sizes 

The final dataset contains various dependency structures among effect sizes that necessitate the 

use of advanced meta-analytical techniques. First, 45 studies have what we define as a correlated 

effects dependency structure. This means that these studies reported multiple outcome results from 

the same sample of students, which produces correlated sampling errors among effect sizes and 

therefore breaks the assumption of independence among effect sizes. Second, there are six studies 

that reported results from multiple non-overlapping samples, which we define as a hierarchical 

effects dependency structure. What characterizes this dependency structure is that individual effect 

sizes are nested within samples that are nested within studies. Although results are coming from 

non-overlapping samples, the fact that researchers applied the same measurement procedure, re-

cruitment strategy, or other study procedures might create a dependency among the mean effects 

coming from the same study. Consequently, the assumption of independent results is violated. 

Third, we have four studies that contained both of the above-mentioned dependency structures, 

which means that they reported multiple outcomes from multiple non-overlapping samples.  

A challenge for synthesizing dependent effect sizes is that the true/exact dependency 

among effect sizes is unknown, and only a few studies reported the information needed to assess 

the true dependency among the dependent effect sizes. To remedy this challenge, we applied ro-

bust variance estimation (RVE; Hedges et al., 2010; Pustejovsky & Tipton, 2021; Tipton & 

Pustejovsky, 2015), which has shown to be the most accurate method for meta-analyzing depend-

ent effect sizes (Fernández-Castilla et al., 2020; Vembye, Pustejovsky, & Pigott, 2022). RVE im-

plies the use of working models that tentatively aims to resemble the true dependency structures 

among effect size estimates coming from the same study. This is done by making various assump-

tions about the dependency structures, including the sample correlation, 𝜌, between within-study 

outcomes. These working models ensure more appropriate weighting schemes of effect sizes rel-

ative to univariate models that assume independence among effect sizes or use study-mean effect 
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sizes. The most beneficial feature of using RVE is that it yields valid estimates even if the assumed 

working model is mis-specified. Furthermore, we applied the “CR2” small-sample corrector (Joshi 

et al., 2022; Tipton, 2015; Tipton & Pustejovsky, 2015) to ensure valid Type I error calibration 

even when analyses are predicated on a small number of studies, which is an issue especially com-

mon in subgroup analyses.  

 

Mean effect size estimation  

To derive the overall mean effect size across all effect size estimates, we applied the correlated-

hierarchical effects (CHE-RVE) model (Pustejovsky & Tipton, 2021; Vembye et al., 2022). The 

CHE-RVE model both takes into account the multi-level structure of the effect size data with effect 

sizes nested in studies (Van den Noortgate et al., 2013, 2014) and guards against any misspecifi-

cation of the model via RVE (Hedges et al., 2010; Tipton & Pustejovsky, 2015) while simultane-

ously accounting for both hierarchical and correlated effects dependence structures. Commonly, 

CHE models entail assuming a constant sample correlation, 𝜌, between effect size estimates com-

ing from the same study. However, we obtained 𝜌 by estimating Pearson’s correlation from studies 

that both reported math and language arts scores, as suggested by Kirkham et al. (2012). We esti-

mated 𝜌 = .706. That appears to be plausible since it closely resembles the sample correlations 

obtainable from the Project STAR-data (Achilles et al., 2008) across 1st-, 2nd-, and 3rd-grade stu-

dents either assigned to the teacher’s aides or single-taught arm, which were 𝜌𝑔𝑟𝑑1 = .718, 𝜌𝑔𝑟𝑑2 

= .722, and 𝜌𝑔𝑟𝑑3 = .735. Using restricted maximum likelihood techniques (Viechtbauer, 2005), 

we estimated two sources of heterogeneity, i.e., the standard deviations at the effect size level (also 

known as the within-study SD, 𝜔) and at the study level (also known as the between-study SD, 𝜏). 

Larger standard deviations indicate larger amounts of variabilities among effect sizes than would 

be expected from sampling error alone. See Supplementary Section S2 (online only) for a detailed 

statistical description of the used CHE-RVE model. 

 

Sensitivity analyses 

Although the CHE-RVE model is expected to be valid even when the working model is misspec-

ified, we conducted a sensitivity analysis in which we investigated the impact of changing the 

assumed sample correlation from 𝜌 = 0 to 𝜌 = 0.95. The main reason for conducting this analysis 
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was that the individual random variance components from CHE models can be substantially af-

fected by the assumed magnitude of 𝜌 (Pustejovsky & Tipton, 2021). Yet, the magnitude of the 

total variance component estimate is usually stable. Moreover, we conducted leaving-one-study-

out analyses to investigate if any specific study had a substantial impact on the mean effect size 

and heterogeneity estimations.  

As further robustness checks, we conducted a range of sensitivity analyses in which we 

changed the inclusion criteria and the assumptions underlying the effect size calculation. Specifi-

cally, we conducted a range of sensitivity analyses in which we changed the ICC values used for 

the approximate cluster bias corrections and the pre-posttest correlation for difference-in-differ-

ences studies for which these correlation estimates were unobtainable. We also tested the impact 

of using neither cluster bias nor the small sample corrections. For studies from which we were able 

to obtain the same effect size using different calculation techniques (e.g., difference-in-differences 

and adjusted means), we applied all available approaches to probe potential discrepancies. Hereto, 

we conducted a sensitivity analysis in which we re-estimated the mean effect size by using the 

most extreme alternative effect size estimate from these studies. Finally, we conducted a range of 

sensitivity analyses in which we repeatedly re-estimated the mean effect size model while chang-

ing inclusion criteria by blockwise excluding the following categories of studies or effect sizes: 

observational studies, non-randomized studies, single-sited studies (i.e., one treatment one control 

class, only), large-scale studies with sample sizes above 1000 students, gray literature, serious risk 

of bias assessed effect sizes, non-US studies, and outlier effect sizes. Outliers were defined as 

effect size estimates falling more than three times the interquartile range below the first quartile or 

above the third quartile (Tukey, 1977; Winters et al., 2022). Under this definition, only one effect 

size calculated from math achievement in the study by Dwyer (2018) was considered as an outlier. 

 

Publication bias testing 

We conducted three complementary publication bias and/or small study effects tests, as suggested 

by Hedges & Vevea (2005). This included Trim-and-Fill tests based both on all individual effect 

sizes and effect sizes aggregated to the study level, Egger’s regression tests accounting for de-

pendent effect sizes using the CHE-RVE model (Egger, Smith, Schneider, & Minder, 1997; 

Rodgers & Pustejovsky, 2021), and step-function selection model tests. For the latter we used both 

three cutpoints at p = .05, p = .10, and p = .50, as well as cutpoints at p = .025 and p = 1 (Hedges 
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& Vevea, 2005), with effect sizes aggregated to the study level. The latter test functioned as a 

sensitivity analysis. For all tests, we either used a modified estimate of the standard error or sam-

pling variance by removing the part of the variability estimation capturing the precision of the 

standard deviation used as the standardizer for the given effect size calculation (Hedges & Olkin, 

1985; Pustejovsky & Rodgers, 2019). If not removed, it would otherwise have created an artificial 

correlation among the standardized mean differences and their variability measures which conse-

quently would have induced the risk of yielding flawed evidence for publication bias and/or small 

study effect. Moreover, we apply contour-enhanced funnel plots for illustrating potentially publi-

cation bias/small study effects (Peters et al., 2008). As a sensitivity analysis, we also made contour-

enhanced funnel plots based on transformed measures which represent an alternative method for 

handling the artificial correlation between standardized mean differences and their variability 

measures (Pustejovsky & Rodgers, 2019). See Supplementary Section S8 (online only) for an 

elaboration of the conducted publication bias tests.  

 

Moderator analyses 

To investigate if focal moderators of methodological and theoretical relevance were able to explain 

differences in outcomes across studies, we conducted a comprehensive range of moderator anal-

yses using three different working models from the CHE model family (Pustejovsky & Tipton, 

2021).  

Our meta-regression analyses fall into three categories, 1) subgroup analyses based on cat-

egorical variables without missing values (i.e., fully reported information across all studies), 2) 

subgroup analyses based on categorical moderators with missing values, and 3) meta-regression 

models including continuous moderators with missing values. For the first set of models, we in-

vestigated whether differential outcomes can be explained by methodological differences between 

research designs, publication status, the overall RoB assessment, and the type of effect size (i.e., 

covariate-adjusted vs. posttest only effect sizes). We also examined whether outcomes substan-

tially differed across study characteristics; type of intervention, subjects, test modes, grade levels, 

the type of control group, and the type of control group used for effect sizes calculation for samples 

of special needs students only. Across these models, we varied between fitting Subgroup Corre-

lated Effects Plus (SCE+) or the Correlated Multivariate Effects Plus (CMVE+) working models 

(find detailed information about the use and the embedded assumptions of these models and the 
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reasons for shifting across models in Supplementary Sections S2-S4 [online only]). As with the 

mean effect size models, these models included heterogeneity at the effect size and study level 

alike (indicated by the + sign). For each of these subgroup models, we investigated mean differ-

ences across subgroups using HTZ Wald tests (Tipton & Pustejovsky, 2015) as well as Wald tests 

based on cluster wild bootstrapping (CWB) with 1999 replications (Joshi et al., 2022). We used 

both to check for consistency between these two Wald-tests, but the main interpretation was placed 

on the CWB values.  

 For the second set of models, we investigated if effect size differences could be explained 

by factors highlighted as focal moderators in the co-teaching literature. First, we tested differences 

between studies in which common planning time was provided against studies reporting no provi-

sion of common planning time. Second, we tested differences between studies in which co-teach-

ing training was provided against studies in which no training was provided. The SCE+ working 

model was the only model used for these analyses.  

 For the latter set of models, we investigated whether the duration and intensity of the in-

tervention as well as if the percentage of males in the sample could explain true variation in effects 

across studies. All of these predictors were centered; the duration was centered around 40 weeks 

of treatment which amounts to one school year, the intensity was centered around five sessions per 

week, amounting to one session per school day, and the percentage of males in the sample was 

centered around 50% males in sample. All models used the same CHE working model as in the 

summary model for the overall mean effect size.  

 Across all moderator analyses, we fitted models with and without adjusting for grade level, 

student sample, and subject differences. For some models, these variables were the independent 

variable of interest. Then, we adjusted for the remaining two control variables. We did not add 

further moderator factors to the models because we detected a severe amount of multicollinearity 

among the moderators. Therefore, we only focused on controlling for factors of substantial content 

importance. See the covariate correlation matrix in Supplementary Table S14 (online only). A 

detailed elaboration of the statistical conduct and model selection procedure is documented in Sec-

tions S3 and S4 in the Supplementary Material (online only). 
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Dealing with missing data 

To handle missing values on moderators variables, we used multiple imputation with 50 imputa-

tions and 50 iterations (Pigott, 2019; Van Buuren, 2018). We applied Exploratory Missingness 

Analysis (EMA) techniques (Schauer et al., 2021) to assess whether a covariate should be included 

in an analysis based on multiple imputation techniques. We excluded all variables if they had more 

than 50 percent missing values or if the missingness structure of the variables was correlated with 

the effect sizes and their variance. Find the EMA at https://osf.io/fby7w/. 

Since no methods have yet been developed to reliably pool multi-contrast Wald tests (i.e., 

HTZ Wald tests) across multiple imputed datasets, we applied a different procedure—relative to 

tests based on covariates without missing values—for obtaining p values for the aggregated Wald 

test pooled across the 50 imputed datasets. First, we averaged coefficient estimates and variance-

covariance matrices using Rubin’s rule (Rubin, 2004), then we calculated the Q-statistics from 

Equation 10 in Tipton & Pustejovsky (2015) and obtained p values from F-tests with q and 𝐽 − 1 

degrees of freedom, where 𝑞 is number of coefficients in the model minus one and 𝐽 is the number 

of studies. We used this approach because simply averaging Satterthwaite degrees of freedom 

across the imputations would yield rather conservative results without a fair chance of finding true 

mean difference between moderator categories.5  

 

Deviations from Preregistration Protocol 

The final review diverges in several ways from our initial pre-registered protocol. The initial plan 

was to use the EBSCO database for literature search, too. However, we experienced problems 

using our rather extensive search string in this database and thus excluded it. Next, we did not 

calculate variance-covariance matrices from studies where they were obtainable since this proved 

to be more problematic than anticipated based on the information given in the different publica-

tions. In addition, we did not conduct sensitivity analysis for publication bias aligned with the CHE 

model (Mathur & VanderWeele, 2020) and weighted average of the adequately powered studies 

(Stanley et al., 2017). However, as we will show later on, publication bias might not be the most 

pressing issue for this review due to the large number of included gray literature. Moreover, we 

 
5 We sought statistical advice for this matter. 
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did not apply multi-level multiple imputation because the nesting structure of the missing values 

did not allow us to conduct this type of imputation since the covariates rarely varied within studies. 

Beyond the protocol, we added several exploratory analyses to the review that were not 

mentioned in the protocol but that were able to strengthen the review. Concretely, we added sen-

sitivity analyses, including an analysis using ICC values from the pretest covariate models–instead 

of the unconditional models–from the population representing all schools from Hedges & Hedberg 

(2007) for cluster bias correction of effect size, an analysis investigating the impact of large studies 

(i.e., sample sizes above 1000 individual students), an analysis omitting single-sited studies (based 

on the assumption that they likely misguide more than they inform), an analysis examining US 

studies only, and an analysis in which outliers were removed. We also conducted an analysis in-

vestigating the difference between special needs student effect sizes based on general and special 

education control groups to investigate if one of the alternative service delivery models outper-

formed the other. Lastly, we conducted a sensitivity analysis of the subgroup analyses based on 

studies that only analyze the effect of co-teaching, i.e., the collaboration between formally edu-

cated general and special education teachers.  

Results 

Figure 1 presents a PRISMA flowchart documenting the search process and the criteria for exclu-

sion of references. We identified 9969 potentially relevant references from databases- and snow-

balling searches. After removing 1962 duplicates, the first and second author title and abstract 

screened 8007 references independently. The proportionate agreement between authors was 

93.74% with Cohen’s 𝜅 = .448, 95% CI[.447, .449], which indicates a week agreement according 

to guidelines commonly referred to (cf. McHugh, 2012; Orwin & Vevea, 2009). However, we have 

no profound concerns about this value since 𝜅 was mainly driven by start-up disagreements to 

which one of the authors applied a more inclusive screening strategy than the other. Subsequently, 

we full-text screened 372 studies independently. We excluded 245 studies for various reasons. The 

most common reason for exclusion at this stage was ineligible study designs (65, most of which 

were single-case pre-post designed studies), ineligible interventions (32), and further duplicates 

(38). We do not report the interrater reliability for the full-text screening because many studies 

were excluded for multiple eligible reasons, which artificially reduced the agreement rate between 
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authors. We then risk of bias (RoB) assessed 128 studies, and of these, 52 studies were excluded 

due to a critical RoB assessment for at least one domain in the ROBINS-I tool. The most common 

reason (i.e., for 25 studies) for a critical ROBINS-I judgment was posttest-designed studies not 

ensuring baseline equivalence among the intervention and control groups or not providing relevant 

covariate/pretest/baseline measures. At last, the final meta-analytic dataset included 76 studies.  

 

FIGURE 1. PRISMA flow chart showing the search, screening, and exclusion process 
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Descriptive Statistics 

Figure 2 exhibits the included studies by year of publication and the type of intervention. It appears 

that there has been an increasing number of studies investigating the academic effects of collabo-

rative models of instruction after 2000, i.e., 61 studies (80%) were conducted in this period. A 

contributing factor to this significant increase might have been the request for more data raised in 

the previous review by MS01. However, we were also able to detect seven additional studies in 

the period from 1990 to 2000 concerning the effects of co-teaching on special needs students’ 

achievement that MS01 did not locate in the database at that time, albeit we applied more narrow 

inclusion criteria. This might point to significant improvement of the quality of databases since that 

time.   

FIGURE 2. Number of studies included in the meta-analysis by year and intervention 

Notice: Three studies (Andersen et al., 2018; LaFever, 2012; Powell, 2007) have examined more than one 

intervention. Therefore, 79 “studies” (intervention observations) are represented in the figure. Thereby, it 

illustrates the publication trends in the three subareas of collaborative models of instruction. 

Study and sample level characteristics 

Tables 1 and 2 and Supplementary Tables S4-S8 (online only) present descriptive statistics regard-

ing the study, sample, and effect size level, respectively. The final meta-analysis was based on 96 
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non-overlapping samples from 76 studies. These studies yielded results from 1 to 5 samples (mean 

= 1.263 samples per study). Most studies used U.S. data (69), with the remaining conducted in 

Belgium (1), Canada (1), Denmark (1), England (1), Hong Kong (1), and Taiwan (2). Across the 

included studies, 36 (47%) focused on elementary school students, while 23 (30%) and 18 (23%) 

studies were on middle- and high school students, respectively. Across samples, the studied grades 

ranged from 1 to 11 (mean = 5.49). Consequently, 12-grade students were absent in this review 

(see Supplementary Figure S1 [online only]). Studies were predominately evaluating the co-teach-

ing intervention, with co-teaching studies (65) outnumbering studies on teacher assistants (8) and 

team-teaching (6) by far. The size of studies was quite heterogeneous. There were many small-

sample studies within the co-teaching literature (M = 198, SD = 515), while teaching assistant 

studies, in contrast, were often based on large samples (M = 1915, SD = 3264), primarily driven 

by three large-scale cluster-randomized trials (i.e., Andersen et al., 2018; Finn & Achilles, 1990; 

Lapsley et al., 2002). Find further details about treatment and control group sample size distribu-

tions in Figure S2 and Tables S4 to S7 in the Supplementary Material (online only). The mean 

duration of the intervention was 37.34 weeks (SD = 23.77), which is close to one year of schooling. 

The duration, however, varied substantially between studies, ranging from 3 to 160 weeks. The 

average number of sessions (i.e., 45-minute sessions) per week was 11.4. However, this character-

istic was infrequently reported.  

Approximately half of the included studies reported whether co-teaching training was pro-

vided prior to the treatment only, with 27 studies reporting the use of training and ten studies 

reporting no training. Aligned with theoretical recommendations for the practice of co-teaching, it 

was common for studies (59) to document whether common planning time was provided for the 

collaborative educators. Only six of these studies reported that there was no common plan time.  

Regarding research designs, only nine studies were RCTs. Thus, the vast majority of stud-

ies (67) were quasi-experimental or observational studies. A distinct feature of this review is that 

59 (76 %) studies were characterized as gray literature, including 55 dissertations (71%) and four 

conference papers (5.3%).  

 

Effect size level characteristics 

Several characteristics varied between the different effect sizes extracted from the same study. We 

calculated 290 effect sizes distributed across 96 samples from 76 studies. Most effect sizes (269) 
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were calculated from either language arts (LA, 165 effect sizes, 53 studies) or mathematics (104 

effect sizes, 44 studies) achievement tests. The mean percentage of male respondents in the sample 

was ~56%, ranging from 31.8% to 77.5%. There were 137 effect sizes from 43 studies on special 

needs students relative to 84 effect sizes from 29 studies and 69 effect sizes from 19 studies coming 

from general education and blended samples of students, respectively. Most frequently, effect sizes 

(i.e., 86.2%) were obtained from standardized achievement test measures. Only eight effect sizes 

represented follow-up effect size estimates (i.e., effects measured more than three months after the 

end of the intervention). Further, only one study (i.e., Andersen et al., 2018) reported intention-to-

treat effect sizes. Hence, we concentrated on treatment-on-the-treated effects exclusively. 

We applied 2-level cluster design adjustments for 67 studies (~88%) because these did not 

adequately account for school- and/or class-level nesting of students. The mean number of effect 

sizes per study was 3.8 (ranging from 1 to 27). Of the calculated effect sizes, 82% were adjusted 

for pretest differences among students, and 88% were adjusted for focal covariate differences (find 

further univariate descriptive information in Supplementary Section S5 [online only]). 

 

TABLE 1. Descriptive Percentages for the Included Studies. 

Study level characteristics Studies (J) Samples (I) Effect sizes (K) PercentageJ 

Study context     
US studies 69 88 253 0.908 

Study design     
(C)RCT 9 9 59 0.118 

QES 21 27 102 0.276 

Observational studies 46 60 129 0.605 

Study outlet     

Dissertation/thesis 55 67 158 0.724 

Journal article 17 25 116 0.224 

Others, incl. conf. abstracts 4 4 16 0.053 

Interventions     
Co-teaching 65 80 236 0.855 

Teacher assistants 8 11 36 0.105 

Team-teaching 6 8 18 0.079 

Student characteristics     
Elementary school (grade 1-5) 36 52 148 0.474 

Middle school (grade 6-8) 23 25 84 0.303 

High school (grade 9-12) 18 19 54 0.237 

Intervention characteristics     

Co-teaching training not provided 10 10 34 0.132 

Co-teaching training 27 37 135 0.355 
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Common planning time not provided 6 6 33 0.079 

Common planning time  53 71 193 0.697 

Methodological features     

% No cluster treatment 

 

67 

 

87 

 

241 

 

0.882 

 

Effect size level characteristics J I K PercentageK 

Outcome characteristics     
LA tests 53 71 165 0.569 

Math tests 44 50 104 0.359 

Science tests 8 8 13 0.045 

Social science tests 3 3 4 0.014 

History tests 1 1 1 0.003 

Combi tests 3 3 3 0.01 

Standardized tests 70 86 250 0.862 

Follow-up test (3 months<) 2 2 8 0.028 

Controls     

General education control group 53 61 190 0.697 

Special education control group 33 44 100 0.434 

Effect size characteristics     
Special education sample 43 54 137 0.472 

General education sample 29 33 84 0.29 

Blended sample 19 23 69 0.238 

Pre-test adjusted 64 84 238 0.821 

Covariates adjusted 69 89 255 0.879 

Serious/high RoB 49 62 145 0.5 

 

TABLE 2. Descriptive Means of Included Studies 

Characteristics J I K MeanI  SD Range 
Sample characteristics       

Number of students 76 96 290 391 1286 10-10781 

Effective sample size1 76 96 290 18 20 5-113 

Intervention group 76 96 290 157.96 494.648 5-4016 

Control group 76 96 290 232.835 812.151 5-6765 

Sample size (co-teaching) 65 80 236 198 514.973 10-4368 

Sample size (teacher assistant) 8 11 36 1915 3264.341 54-10781 

Sample size (team-teaching) 6 8 18 518 1186.489 46-3450 

Grade 76 96 290 5.492 2.845 1-11 

Duration in weeks 70 90 273 37.348 23.772 3-160 

Sessions per week 27 35 160 11.404 8.221 1-25 

% Males in sample 57 66 239 55.971 9.632 31.8-77.5 

Number of samples per study 76 96 290 1.263 0.772 1-5 

Methodological features       

Effect sizes per study 76 96 290 3.816 4.21 1-27 

Mean obtainable pre-posttest 𝜌 24 29 90 0.611 0.1683 -0.036-0.92 

Note. 1) Calculated via 4/𝜎𝑇, where 𝜎𝑇 is the standard deviation both containing individual and cluster level heterogeneity. 

2) This mean was aggregated to the study level. 3) This mean was calculated at the effect size level. 

123



Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 

Risk of Bias 

Figures 3 and 4 depict weighted summary plot results of the RoB assessment for the non-random-

ized and for randomized studies, respectively. Specifically, 67 studies were assessed via the ROB-

INS-I tool, while nine were assessed either by the RoB 2 or RoB 2 CRCT tools. The plots are 

weighted by CHE model weights (Pustejovsky, 2020c). Therefore, the plots show “the proportion 

of information rather than the proportion of studies that is at a particular risk of bias” (McGuinness, 

2021). See Supplementary Section S6 (online only) for further details about the RoB assessment, 

including unweighted plots and separated plots for quasi-experimental and observational studies.  

As illustrated in Figure 3, ROBINS-I assessed effect sizes most frequently received a mod-

erate risk of bias due to confounding and/or reporting issues, mainly because pretest-adjusted ef-

fect sizes were rated to be of moderate risk of bias due to confounding. This judgment was made 

on the consideration that it might be unrealistic to expect that the pretest adjustment (or focal 

covariate adjustment) controls out all imbalances between intervention groups under all circum-

stances. We only judged ROBINS-I assessed studies in which randomization was used but not 

controlled or initiated by the researchers to encompass a low risk of confounding. In contrast, most 

RoB 2 assessed effect sizes received a low risk of bias due to randomization, as appears from 

Figure 4.  

The majority of the included studies across all research designs were judged to be of mod-

erate risk of bias due to (selective) reporting because none of the included studies were pre-regis-

tered. We only considered studies that provided the raw data behind the analyses to be of low risk 

of bias due to reporting. For RCTs, the main reason for not being rated as low overall risk of bias 

was the lacking pre-registration.  

Notably, 45 out of 67 non-randomized studies contained at least one effect size assessed 

with an overall serious risk of bias. In total, 135 ROBINS-I assessed effect sizes received an overall 

serious risk of bias. The most common reason (i.e., 24.4% of the ROBINS-I assessed effect sizes, 

see Supplementary Table S12 [online only]) for a serious RoB assessment was due to limited de-

scriptions of the implementation process (D4). For the same reason, ~10% of the ROBINS-I as-

sessed effect sizes received a serious RoB assessment due to classification. We often made this 
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judgment because the control group was scantly defined as “treatment as usual.” Generally, meas-

urement of outcomes did not lead to many serious RoB ratings as 86% of the included studies 

applied standardized testing.  

In sum, risk of bias assessment needs to be taken serious for the sample of studies going 

into this meta-analysis. Half of the included effect size estimates were assessed to have a serious 

overall risk of bias. This result was mainly driven by the fact that most of the included studies 

applied non-randomized research designs. In our first set of subgroup analyses, we contrast the 

differences between serious and non-serious risk of bias effect sizes to investigate the impact on 

the main results of including studies and effect sizes considered to be of serious risk of bias. 

 

FIGURE 3: ROBINS-I Weighted Summary Plot 

 

Note: This plot contains information related to 225 effect sizes coming from 67 non-randomized studies of which 98 

effect sizes come from 21 quasi-experimental studies and 127 effect sizes come from 46 observational studies  

 

FIGURE 4: RoB 2 and RoB 2 CRCT Weighted Summary Plot 

 
Note: This plot contains information related to 55 effect sizes coming from 9 randomized studies of which 26 effect 

sizes come from four RCTs and 29 effect sizes come from five cluster RCTs.  
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Meta-Analysis 

Mean effect size estimation 

The overall mean effect size from our meta-analysis summarizes a total of 280 effect sizes across 

96 samples from 76 studies. For the mean effect size analysis, we excluded 10 effect sizes, i.e., the 

few (eight) follow-up effect size estimates and two effect sizes from the special needs student 

sample in Schaef (2014) since this sample overlapped with the blended student sample from which 

the rest of the effect sizes were estimated. The forest plot in Figure 5 depicts the distribution of 

dependent effect sizes from each study around the estimated overall mean effect size. Furthermore, 

the specific weight attributed to each single effect size can also be found in Figure 5. 

We found a positive, statistically significant overall standardized mean difference of 0.11 

standard deviations (SD), t(40.3) = 2.97, p = 0.005, 95% CI[0.035, 0.184]. In line with Kraft’s 

(2020) benchmarks for interpreting education interventions with standardized achievement out-

comes, we consider this to be a moderate effect size. Using Cohen’s U3, this result indicates that 

the average co-taught students had a better achievement score than 54.4% of the control students 

(Baird & Pane, 2019; Valentine et al., 2019), or put differently, there is a 54.4% chance that a 

randomly sampled score from the intervention group lies above the mean of the control group. On 

the student level, this translates to that a typical student from the control group would be expected 

to have had a percentile gain of 4.4% had the student received a collaborative model of instruction 

(WWC, 2020).  

We found a substantial amount of heterogeneity among effect sizes, Q(279) = 1164.2, p < 

.0001, 𝐼2 = 91.73, with variance components (reported as SDs) of 0.255 SD at the effect size level, 

0.102 SD at the study level, and a total SD of 0.274.6 This suggests that both the study and effect 

level covariates might be able to explain differences in effect sizes estimates across studies, which 

in turn justified all of our planned moderator analyses (cf. Pustejovsky & Tipton, 2021).  

 

 

  

 
6 The total SD is calculated by the square root of the sum of the within- and between-study variance. 
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FIGURE 5. Mean Effect Size Forest Plot across Dependent Effect Sizes 

 

Note: Number of effect sizes per study in parentheses. Percentages indicate the weight given to each point 

within the given study. Studies are ordered by the study mean effect size obtained from fitting the within-

study effect sizes to a univariate meta-analysis model, as suggested by Fernández-Castilla et al. (2020). The 

bold line indicates the overall average effect size (𝑔̅ = .11) and the dashed lines indicate the 95% confidence 

interval from the fitted CHE-RVE model.   

127



Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 

Sensitivity analyses 

The overall mean effect size (𝑔̅) was insensitive to changing assumptions about the sampling cor-

relation, 𝜌, among effect sizes from the same study, with estimates varying from 0.107, 95% 

CI[0.0332, 0.180] assuming 𝜌 = .0 to maximum 0.111, 95% CI[0.034, 0.187] when 𝜌 = .6. The 

total variance component estimate was, to a large degree, substantially insensitive to changing 𝜌. 

Yet some variation was detected, with the total SD ranging from 0.232 to 0.347. By contrast, the 

individual variance components were heavily sensitive to the magnitude of 𝜌 (see Supplementary 

Figure S10 [online only]). Therefore, the relative magnitude of the individual variance component 

estimates should be interpreted with caution. The same patterns appeared for the conducted leave-

one-study-out analyses in which 𝑔̅ happened not to be substantially influenced by any single study. 

𝑔̅ ranged from 0.088, 95% CI[0.031, 0.144] when omitting Mathieu (2019) to 0.122, 95% CI[0.05, 

0.194] when omitting Mason (Mason, 2013). The estimated total variance component estimate was 

generally insensitive to omitting any single study, ranging from 0.243 to 0.285. Yet the between-

study variation was heavily impacted by omitting Mathieu (2019). In fact, the study level SD re-

duced to .0, when omitting this study, indicating that the between-study variance estimation was 

fragile (see Supplementary Figures S11 and S12 [online only]). 

Figures 6 and 7 display how the mean effect size estimation was influenced by changing 

assumptions related to the effect size calculation and inclusion criteria of the review, respectively. 

Generally, 𝑔̅ was agnostic to alterations of assumptions related to the effect size calculation pro-

cedure, with 𝑔̅ ranging from 0.094, 95% CI[0.028, 0.159] when using the most extreme alternative 

effect sizes from studies reporting multiple results eligible for different effect size calculations to 

0.113, 95% CI[0.044, 0.183] for calculations based on an imputed constant pre-posttest correlation 

of .8 for studies reporting difference-in-differences results without providing the pre-posttest cor-

relation. The variance estimation slightly varied when changing effect size calculation assump-

tions, with the total SD ranging from 0.248 to 0.377 (see Supplementary Figure S13 [online only]). 

Overall, 𝑔̅ was not substantially influenced by changing any inclusion criteria. Under all 

changed conditions, 𝑔̅ remained in the moderate effect size interval (cf. Kraft, 2020), with 𝑔̅ rang-

ing from 0.068, 95% CI[-0.002, 0.138] when re-estimated on RCT studies only to 0.144, 95% 

CI[0.066, 0.221] when observational studies were excluded. As indicated by the confidence inter-

val in Figure 7, 𝑔̅ only just turned statistically insignificant when the re-estimation was based on 
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RCT studies only. However, this sensitivity analysis was based on the smallest number of studies 

and effect sizes (i.e., nine studies and 55 effect sizes) relative to the rest of the analysis. This 

substantially reduced the power of that model. In line with theoretical expectations on publication 

bias (Cheung & Slavin, 2016; Rothstein et al., 2005), we found that 𝑔̅ slightly increased when 

omitting gray literature (i.e., studies not published in scientific peer-reviewed journals). Interest-

ingly, we found that 𝑔̅ is not impacted by removing all effect sizes assessed with an overall serious 

risk of bias, despite this reduced the sample by 40 studies and 139 effect size estimates. Contrary 

to our assumption, omitting all large-scaled studies with sample sizes larger than 1000 slightly 

reduced 𝑔̅. We can, therefore, conclude that 𝑔̅ was not mainly driven by the included large-scale 

studies such as the three large cluster RCTs, although these were given more weight relative to the 

smaller studies. The total SD and the effect size level SD estimations were more or less agnostic 

to the changed inclusion criteria, although the study-level SD was to a greater extent influenced 

by the changed inclusion criteria (see Supplementary Figure S13 [online only]). 

 

FIGURE 6: Sensitivity analysis changing effect size estimation assumptions   

Note: The right side of the figure presents the overall average effect size and its confident interval as well as the 

related 𝑝 value for the re-estimated model. The solid line indicates the overall original main result and the gray region 

demarcates its confident interval. 
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FIGURE 7: Sensitivity analysis changing inclusion criteria  

Note: The right side of the figure presents the number of studies and effect sizes in parenthesis and the overall average 

effect size and its confident interval as well as the related 𝑝 value for the re-estimated models. The solid line indicates 

the overall original main result and the gray region demarcates its confident interval.  

 

Publication bias 

We conducted a range of complementary publication bias and/or small study effect tests without 

finding any systematic evidence for publication bias or small study effects. Figure 8 depicts con-

tour-enhanced funnel plots conducted at the effect size and at the study level using modified stand-

ard errors and transformed effect size estimates, respectively. These plots indicate no small-study 

effects/publication bias. Overall, we did not find any systematic indication of publication bias or 

small study effects based on the applied tests, i.e., Trim-and-Fill test, cluster-robust Egger’s re-

gression tests, or selection models test (see Supplementary Section S11 for the concrete results 

[online only]). Hence, we do not expect publication bias to have had any substantial influence on 

the mean effect size estimation, which might not be a big surprise (Pigott, Valentine, Polanin, 

Williams, & Canada, 2013) since more than 77% (i.e., 57 studies) of the included studies represent 

gray literature.  
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FIGURE 8. Contour-enhanced funnel plots  
 

 
Note. Contour-enhanced funnel plots present estimates at the effect size and study level using modified standard error 

and transformed estimates, respectively. The green region indicates p > .10, the dark gray region corresponds to p 

values from .05 to .1 and the light gray region corresponds to p values from .01 to .05. The white region outside the 

funnel plot shows p values < .01. Dashed lines mark the distribution around the estimated mean effect size.  

 

Subgroups analyses  

While the above-presented CHE-RVE model summarized the overall mean difference between co- 

and single-taught classrooms across all K = 280 effect sizes, accounting for dependent effect sizes, 

it did not take into account potential differences in effect sizes across interventions, outcomes, 

participants, research designs, risk of bias assessment, and publication bias characteristics. In 

order to study such potential heterogeneities, we conducted a comprehensive range of meta-re-

gression analyses. Table 3 reports subgroups analyses of focal moderator variables that are cate-

gorical and did not contain any missing values (see Supplementary Section S9 for relevant sub-

group forest plots [online only]). All analyses reported in Table 3 were based on 275 effect sizes 

across 94 samples from 74 studies. In total, we excluded 15 effect sizes from six studies, of which 

two studies were fully excluded from the subgroup analysis dataset. As with the mean effect size 

model, we excluded the eight follow-up effect sizes. Their rather small number did not allow for 

131



Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 

 

 

reliably estimating the mean effect size for this subgroup dimension. We further excluded a num-

ber of effect sizes and studies because their research design did not allow for the exploration of 

moderate effects. This means that we excluded all of the four effect sizes calculated from Carlson 

et al. (1984) because the sample represented a mix of students across grades 1 to 12. Furthermore, 

we excluded three effect sizes from three studies because they used achievement tests that were 

based on tests averaging results across language arts and math test measures. Contrary to the mean 

effect size model, we included all effect sizes from Schaef (2014) since it allowed us to explore 

differences across student samples.  

 As can be seen from Table 3, we generally found rather robust effects of collaborative 

instruction across most of the conducted subgroup analyses. Most of the individual effects are not 

statistically different from zero, as could be expected due to the rather small samples and effects 

across subgroups. The empirically estimated average group means across most subgroup dimen-

sions of collaborative instruction fell within the interval of moderate effects, i.e., between 0.05 to 

< 0.20. We only found two statistically significant average group differences, both for the uncon-

ditional (i.e., the models without controls) and the covariate-adjusted models. These were between 

covariate-adjusted and posttest-only effect sizes, with F(1, 7.8) = 10.2, p = 0.013 (CWB p = 0.001), 

and between OBS, QES, and RCTs, with F(2, 12) = 4.86, p = 0.028 (CWB p = 0.004). The former 

test showed, and in contradiction to previous research (cf. Cheung & Slavin, 2016; Lipsey & 

Wilson, 2001), that covariate-adjusted effect sizes yielded substantially larger effect sizes than 

posttest effect sizes, while the latter test indicated that QES yielded larger, positive effect sizes 

than RCTs and OBS. These results were equivalent when controlling for differences across sub-

ject, grade level, and student sample characteristics. Notably, substantial heterogeneity remained 

across the majority of the conducted subgroup analyses.  

 The difference between the two-teacher compositions was below practical relevance and 

not statistically significant. The average subgroup effect size ranges from 0.067, 95 CI[-0.012, 

0.147] for teacher assistant interventions to 0.12, 95% CI[0.020, 0.22] for co-teaching interven-

tions in the unconditional model. We neither found any statistical nor substantial important differ-

ence between subjects categories, with the average group effect sizes ranging from 0.076, 95% 

CI[-0.021, 0.173] for STEM and 0.137, 95% CI[0.056, 0.217] for Arts & Social Science outcomes 
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in the unconditional model; with both results considered to be moderate in size. From the uncon-

ditional model, we did find a small effect (cf. Kraft, 2020), not statistically distinct from zero for 

effect sizes based on samples of general education students of 0.038, 95% CI[-0.081, 0.157], and 

a moderate effect statistically distinct from zero for effect sizes premised upon samples of special 

needs students of 0.143, 95% CI[0.016, 0.269]. However, we did not find a statistically significant 

difference between the two means, F(1, 33.6) = 1.61, p = 0.213 (CWB p = 0.220), which suggests 

that general education and special needs students might benefit equally from collective instruction. 

However, the effects for general students are substantially smaller, which might be of practical 

relevance if confirmed as statistically significant. Yet, the present models did not have enough 

statistical power to draw a firm statistical conclusion for this matter.  

Results differed across grade levels, with 𝑔̅ = 0.122, 95% CI[0.047, 0.198], p = 0.004 for 

elementary school outcomes, 𝑔̅ = 0.08, 95% CI[-0.106, 0.267] for middle school outcomes, and 𝑔̅ 

= 0.046, 95% CI[-0.133, 0.226] for high school outcomes. However, the results did not reveal any 

statistically significant differences, F(2, 25.6) = 0.398, p = 0.676 (CWB p = 0.697), for the uncon-

ditional model. Although the high school means effect fell within the small effect interval, it can 

be considered as a substantial effect compared to the annual gain usually experienced in later 

grades (Lipsey et al., 2012). Similarly, the declining trend that we found for effects from earlier to 

later grade levels also confirms the tendency found in annual gains across subjects from nationally 

normed tests in the U.S. (Lipsey et al., 2012). 

Further, we did not find any practical relevant subgroup mean differences between risk of 

bias, the study outlet, and the type of test categories, with all of the subgroup means distributed 

closely around the overall average effect sizes ranging from 0.08 SD to 0.136 SD across the un-

conditional models. Nor did we find any statistically significant difference between effect sizes 

based on general or special education control groups. As an exploratory analysis, we conducted 

the same test on a subsample with special needs students only in order to investigate if any of the 

service delivery models (inclusive/general education singe-taught vs. special education class-

rooms) could be considered superior relative to the other. We did not find any statistically or prac-

tical significant difference between subgroup means for this analysis either (see Supplementary 

Table S16 [online only]).   
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 Generally, the results from the unconditional models were mostly equivalent to models 

controlling for subject, grade-level, and student sample differences, with no differences across all 

HTZ and CWB Wald tests, as well. It should also be mentioned that we did not find any inferential 

discrepancies between HTZ and CWB p values across all types of models. Moreover, we con-

ducted tests correcting for multiplicity7 by using the false discovery rate method (Benjamini & 

Hochberg, 1995; Laird et al., 2005; Polanin, 2013), without this changing our inferences when 

based on CWB p values. As a sensitivity analysis, we re-estimated this set of subgroup analyses 

based on co-teaching effect sizes only, i.e., collaboration inventions only comprised by general 

and special education teachers (see Supplementary Table S15 [online only]), without finding any 

noteworthy difference in results between the two sets of subgroup analyses. 

 

Moderator analyses with missing values  

We conducted two sets of moderator analyses for covariates/predictors of theoretical relevance 

based on multiple imputed values for missing values on these variables. The first set of analyses 

included categorical moderators, while the second set concerned continuous variables. Table 4 

reports on the comparisons between studies using vs. not using common planning time and co-

teaching training vs. no training, respectively. Table 5 displays the effects of duration and intensity 

of the collaborative instruction as well as the average percentage of males in the sample. From 

these analyses, we did not find any statistically significant effects, suggesting that none of these 

moderators explained differences in effectiveness as otherwise indicated in the co-teaching litera-

ture.  

  

 
7 i.e., the increased probability of commiting a Type I error just by conducting multiple statistical significance tests.  
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TABLE 4: Subgroup analyses based on categorical theoretical relevant covariates with less than 

50 percent missing values.  

Subgroup Unadjusted effects Covariate-adjusted effectsa 

Coefficient Est. [95% CI] Satt. 

df 

SD 

(𝜏 + 𝜔) 

Est. [95% CI] Satt. 

df 

SD 

(𝜏 + 𝜔) 

Plan time 

No common plan time -0.047 [-0.316, 0.223] 3.1 0.322 -0.085 [-0.313, 0.142] 14.1 0.319 

Common plan time 0.16***[0.075, 0.245] 36.2 0.256 0.132* [0.002, 0.261] 24.6 0.261 

Wald test p value 0.085b 0.098

Training 

No co-teaching training 0.082 [-0.060, 0.224] 14.2 0.230 0.095 [-0.090, 0.281] 11.9 0.237 

Co-teaching training 0.145* [0.036, 0.254] 19.2 0.308 0.148* [0.024, 0.273] 18.1 0.308 

Wald test p value 0.869 0.945 

*p < .05. **p < .01, ***p < .001. a) The below results are adjusted for student sample, grade level, and subject differ-

ences. b) All significance values in this table were based on robust F-tests with 𝑞 and 𝐽 − 1 degrees of freedom.

TABLE 5. Meta-regression for continuous focal theoretical moderators with less than 50 percent 

missing values. 

*p < .05. **p < .01, ***p < .001

Discussion 

Over the last four decades, research on the effectiveness of collaborative models of instruction on 

students’ academic achievement has increased considerably. We demonstrated that the increase 

was larger than often laid out in primary research and previous reviews on the topic by evaluating 

128 studies with treatment-control designs. Notably, we found more studies within all historical 

periods that had previously been reviewed. On this body of literature, we used state-of-the-art 

techniques to meta-analyze results across 96 samples of students from 76 studies, which we did 

Moderator Model 1 Model 2 Model 3 Model 4 

% Males  0.012 (0.006) 0.014 (0.008) 

Duration in weeks 0.001 (0.002) 0.000 (0.002) 

Intensity (sessions per week) -0.001 (0.004) -0.001 (0.005)

General education students  0.032 (0.067)

Aggregated sample (ref. spec. education) 0.085 (0.096)

Middle school (grade 6-8)  -0.075 (0.100)

High school (grade 9-12) (ref. primary)  -0.081 (0.102)

Arts (ref. STEM)  0.036 (0.051)

Intercept 0.037 (0.045) 0.109** (0.034) 0.125* (0.050) 0.011 (0.087) 

Multiple imputation Yes Yes Yes Yes 

Effect sizes  275 275 275 275 

Number of studies  74 74 74 74 
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not consider to be of critical risk of bias. These yielded 280 effect sizes, of which most were based 

on standardized achievement outcomes from LA and math tests and pretest-adjusted measures.  

Across the studies included for meta-analysis, varying on intervention, location, imple-

mentation, outcome, research design, and participant characteristics, we found that collaborative 

models of instruction significantly increase student achievement compared to either single-taught 

or special education instruction models. The effect was moderate in size compared to the results 

of previous causal research on education interventions with standardized achievement outcomes 

(Kraft, 2020). It remained moderate in size across all conducted sensitivity analyses and publica-

tion bias tests, with the absolute majority of these tests supporting the conclusion of the mean 

effect size being statistically distinct from zero. Most importantly, the overall mean effect was not 

altered by the inclusion of a large number of effect sizes assessed to be of serious risk of bias. In 

contrast to previous discussions (Achilles, Finn, Gerber, & Zaharias, 2000), this review provides 

unambiguous evidence for the effectiveness of collaborative models of instruction on student 

achievement. 

 In order to assess potential differences in the effects along the lines of moderators that are 

considered as theoretically or methodologically important in the literature, we fitted a range of 

meta-regressions models. To our surprise, we found that the effects of collaborative instruction 

were generally robust across the assessed moderators. The absolute majority of subgroup effects 

fell within the interval of a moderate effect, i.e., between 0.05 to <0.20. This applied to the uncon-

ditional as well as the covariate-adjusted meta-regression models, controlling for student, grade, 

and subject differences. Interestingly, we neither found any statistical nor practical difference be-

tween interventions with special education co-teachers compared to those with teacher assistants. 

Therefore, in contrast to the co-teaching literature—as, e.g., portrayed by Cook and Friend 

(1995)—our results suggest that the effectiveness of collaborative models of instruction does not 

necessarily hinge on specific co-teacher compositions, the education of the second teacher, and/or 

an equal share of teaching responsibilities between co-teachers. This suggests that the mechanisms 

through which collaborative models of instruction work might be less complicated than often as-

sumed in co-teaching literature. In addition, we did not find any notable differential effects across 

subjects. The mean difference between Arts & Social Science vs. STEM subjects was practically 

small and not statistically significant. Across grade levels, we found that the average effect size 
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slightly declines for higher grade levels, which confirms previous trends found in evaluations and 

benchmarks of annual gains across grade levels in the U.S. (Lipsey et al., 2012). However, we did 

not find any statistically significant difference between the mean effect sizes from elementary, 

middle, and high school outcomes, suggesting that collaborative models of instruction can poten-

tially be effective across all grade levels. Although we did find a substantially small effect for 

general education students, the mean effect difference between general and special education stu-

dents remained statistically insignificant. This might suggest that collaborative instruction is not 

only a viable model for the inclusion of students with special educational needs in general educa-

tion in terms of improving their achievement, but it can benefit general education students as well.  

 Furthermore, we tested a range of factors that are considered in the co-teaching literature 

as practically relevant preconditions for co-teaching to be effective. These factors included com-

mon planning time, co-teaching training, the duration and intensity of the intervention, as well as 

the number of males students in the sample. We found that none of these factors were able to 

explain the difference in effects across studies or effect sizes. However, all of these analyses were 

based on variables with a large share of missing values. Although we used multiple imputation 

techniques to remedy this issue, we recommend being cautious about the results and seeing them 

as preliminary. Finding moderators and conditions for a successful implementation of co-teaching 

is thus an area that calls for further experimental investigation.  

 In a similar vein, our results indicate that the observed study characteristics of this review 

do not fully explain true differences across outcomes between and within studies since considera-

ble heterogeneity remained at both the effect size and study level for the majority of the moderator 

analyses. It only disappeared for subgroups in which the total number of studies and effect sizes 

were limited. Hence, there is still a need for further investigation into differences in the effects of 

different collaborative models of instruction and settings.    

 

Limitations 

Although we have performed a comprehensive literature search and attempted to offer in-depth 

analyses, this review has several limitations. A major limitation of this review is that we concen-

trated on students’ academic achievement only. This essentially circumscribes the general conclu-

sion regarding the potential efficacy of collaborative models of instruction beyond academic 

138



Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 

 

 

achievement. From an educational perspective, academic achievement might not necessarily be 

the only reason for implementing collaborative models of instruction. Future research, reviews, 

and meta-analyses should certainly complement our results by studying the effects of collaborative 

models of instruction on other outcomes such as student well-being, social and behavioral, and 

teacher satisfaction measures. Additionally, we did not inspect differential effects across subtypes 

of subjects, such as the differences of effects between reading, writing, and spelling outcomes 

which might be essential to get a more fine-grained and adequate understanding of the effective-

ness of collaborative instruction.  

 Several caveats should be mentioned with regard to the included literature as well. In many 

cases, we experienced difficulties in obtaining information regarding the actual number of special 

needs students included in the specific general classroom. Moreover, it was often uncertain if the 

number of special needs students was held constant across co-taught and single-taught classrooms. 

For special education control groups, it was, in some cases, quite difficult to decipher the exact 

number of present adults during the instruction. We assumed that the special education instruction 

was single-taught if not otherwise mentioned. Moreover, we were not always able to ensure that 

the class sizes across the treatment and control groups were held constant. Also, it was rare for 

studies to control out teacher differences across the treatment and control groups. In other words, 

only a few studies applied the same teachers across the treatment and control groups.  Since we 

included a large number of observational studies, it was often difficult to assess the fidelity of the 

implementation of the given interventions. Altogether, these factors might potentially have in-

duced some degrees of error to the mean effect size estimations and reduced the generalizability 

of the review.      

Another limitation to the generalizability of the review is the dominance of U.S. studies and 

its principal limitation to education systems in high-income countries according to the World Bank 

definition. While we demonstrate that the interventions showed to be effective in other countries 

as well, there is a clear need for research into the generalizability to middle- and low-income coun-

tries in particular.  

Further limited by the included body of literature, we were unable to answer a range of ques-

tions of theoretical and practical importance, such as the impact of the number of included students 

with special needs in co-taught classes, the socioeconomic status of the students, the exact co-
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teaching model used, and the relation and teamwork of the co-teacher teams. These might be fac-

tors of potential relevance for future research of differential effects of collaborative models of 

instruction. 

Although we employ state-of-the-art review methods, a number of limitations remain in this 

regard too. For example, most parts of the risk of bias assessment and data extraction represented 

single-coder and -rater procedures that may have induced some degree of error. However, all as-

sessments and data extractions are available at https://osf.io/fby7w/ for critical inspection and fu-

ture updates. Lastly, it is important to notice that all publication bias tests that we employed have 

inherent deficits. Both the Trim and Fill and cluster-robust Egger regression methods have limited 

power to detect small study effects, especially when the effect is small and dependent effect sizes 

are present. Moreover, selection models based on dependent effect sizes aggregated to the study 

level do not fully control the nominal Type-I error rate (Rodgers & Pustejovsky, 2021). Therefore, 

all publication bias tests should be seen as an indication for the absence of reporting biases, but 

this possibility cannot be ruled out entirely. Nevertheless, we do not consider publication bias to 

be an issue of paramount importance since this review included a large amount of gray literature.  

 

Implications for Practice and Research 

Our results suggest that schools and teachers can improve student academic learning for all stu-

dents by using collaborative models of instruction and that the potential is independent of the spe-

cific type of within-class collaboration. Moreover, making collaborative instruction effective 

might be less complicated than sometimes asserted in the co-teaching literature. As a consequence, 

we conclude that school leaders and educators can implement collaborative instruction across all 

Arts, Social Science, and STEM subjects as well as grade levels both in cases where no specialists 

with a formal teacher education are available but also when resources for common planning time 

and co-teaching training are restricted. It might be that formal education of educators can have an 

impact on the efficacy of collaborative instruction. Our results just suggest that the difference is 

too small to be of practical significance. Having a spare in-class adult as such seems to be the more 

relevant factor than the two-teacher composition and the education of the second educator. Nev-
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ertheless, it goes without saying that the effectiveness of collaborative models of instruction cer-

tainly might still benefit from a careful consideration of the local context and the concrete educa-

tors involved in the implementation as well as the execution of the intervention. 

 Our results also have several implications for educational research. The majority of the 

included studies report short-term outcomes only, i.e., outcomes either measured during the inter-

vention or immediately after its end. Thus, future research needs to concentrate more intensively 

on assessing the long-term effects of collaborative instruction. Since cost-benefit analyses are com-

pletely absent in the present body of literature, future research with a focus on investigating the 

cost-benefit of collaborative models of instruction is needed, including the relative cost-benefit of 

these models of instruction compared to other related interventions such as increased instruction 

time and class size reduction.  

 As with all reviews and meta-analyses, the reliability, validity, and credibility of this re-

view hinge on the quality of the included studies, which are predominantly non-randomized stud-

ies. Most (cluster) randomized trials came from the teacher assistant literature and were large-scale 

trials. In contrast, co-teaching studies often had small sample sizes and were based on non-ran-

domized research designs. Thus, future co-teaching research must continue to attempt large-scale 

randomized controlled trials or high-quality matched-groups designs to assess the true effect of 

co-teaching. Overall, we argue that the need for more studies as such is less urgent. Instead, larger 

and more rigorously conducted studies are needed, especially for co-teaching interventions. Here, 

primary research that investigates the variation across focal moderating factors and/or precondi-

tions for effective co-teaching interventions is needed in particular (Hedges, 2018). More should 

also be learned about the differences between the effect on general vs. special needs students be-

cause the evidence for the effectiveness of collaborative instruction on the achievement of general 

education students was not firmly clinched in this review. 

 

Implication for Educational Policy 

Although we find a moderate and practically significant effect size, it is important to emphasize 

that introducing collaborative models of instruction can be costly. In contexts with scarce re-

sources, policy-makers and local stakeholders could profitably start searching for cheaper and 

more efficient interventions. That said, our results point to an increased potential for the scalability 
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and applicability of these interventions since the effectiveness of these models did not appear to 

hinge on any specific sets of two-teacher compositions. That opens the possibility of relying on 

the comparatively inexpensive option of employing para-professional educators.  

In contrast to previously discussed alternative policy options for improving the student-

teacher ratio, such as class size reduction (Achilles et al., 2000), an advantage of collaborative 

instruction is that it can be implemented easily, also on a day-to-day basis. Noticeable, collabora-

tive instruction works equally well as other structural interventions, including increased instruction 

time (Kidron & Lindsay, 2014, p. 5, with g̅ ranging from -0.04 to 0.16 across literacy and math 

subjects) and class reduction (Filges et al., 2018, p. 10, g̅ = 0.11, 95% CI[0.05, 0.16, p = 0.0003]).  

Albeit collaborative instruction cannot close the achievement gap between general educa-

tion and special needs students (Dietrichson et al., 2017), our results suggest that it can function 

as a vital and significant tool for schools and school systems to accommodate the inclusion of 

students with special educational needs and/or disabilities in general education. We think that col-

laborative instruction can, indeed, function as a contributing factor, adding further improvement 

to the educational achievements of special needs students together with other relevant interven-

tions aiming at increasing student achievement for this group of students (Dietrichson et al., 2020, 

2021). 

Conclusion 

The findings of this systematic review and meta-analysis provide evidence for the effectiveness of 

collaborative models of instruction on students’ academic achievement. This pertains to all stu-

dents and is independent of the specific model of in-class collaboration between educators, the 

subject taught, and the grade level. Although the main results of this review were generally robust 

across all of the conducted sensitivity, publication bias, and moderator analyses, there is still plenty 

of room for further investigation of this field of literature. A range of potentially relevant moder-

ators was not possible to analyze, e.g., since they are inadequately documented in the present re-

search literature. Consequently, future studies should assign more weight to study such modera-

tors, and policy-makers should bear in mind this gap in existing evidence. 
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Appendix 2: Supplementary Material (Chapter II) 

This document contains further analyses related to the paper “The Effects of Co-Teaching and 

Related Models of Instruction on Student Achievement: A Systematic Review and Meta-Analysis.” 

Specifically, we present more detailed information regarding previous reviews of collaborative 

models of instruction, the risk of bias assessment, the effect size calculation procedure, and the 

statistical methods used throughout the main paper. Furthermore, we present a range of tables and 

figures containing further information about the descriptive statistics, the distribution of the effect 

size estimates, risk of bias assessment features, conducted subgroup analyses, and publication bias 

tests.  
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Study Type of re-

view 

Intervention(s) Outcomes Included 

study de-

signs 

Student 

sample 

Synthesis 

method 

Treatment of 

dependency 

Years 

included 

Number of 

studies 

Risk of bias as-

sessment 

Main conclusion 

Qualitative reviews 

Scruggs et 

al. (2007) 

Systematic 

review 

Co-teaching Perceptions 

of teachers 

Interview 

and observa-

tion studies 

Mixed, 

i.e., gen-

eral and

special

education

students

Narrative N/R 1995-2006 32 “considered 

‘quality indica-

tors’ as repre-

sented by 

Brantlinger et 

al. (Figure 3, p. 

202)” (p. 298) 

“it can be con-

cluded that teach-

ers and adminis-

trators were satis-

fied overall, 

(..) with co-teach-

ing” (p. 411) 

Mixed method reviews 

Alborz et 

al. (2009) 

AND 

Farrell et 

al. (2010) 

Systematic 

review 

Teaching assis-

tants (most of-

ten including 

interventions 

where students 

are withdrawn 

from class) 

Academic 

achievement 

outcomes 

Treatment 

and control 

group de-

signed stud-

ies, only 

AND 

Mixed 

Mixed, 

i.e., gen-

eral and

special

education

students

Narrative N/R Unlimited 

-2008

35 EPPI’s “weight 

of evidence” 

“The findings in 

relation to TA im-

pacts on participa-

tion of pupils with 

SEN present a 

mixed picture.” 

(Alborz et al. 

2009, p. 40) 

Cook et al. 

(2017) 

Narrative 

review 

Co-teaching Mixed Mixed Special 

education 

students 

Narrative N/R 1991-2015 ~15 CEC (2014) 

Quality Indica-

tors 

“Our review of 

the empirical lit-

erature indicated 

that experimental 

research on co-

teaching contin-

ues to be sparse 

and 

inconclusive.” (p. 

246) 

Dyssegaard 

& Larsen 

(2013) 

Systematic 

review 

Co-teaching 

and teacher as-

sistants 

Mixed Mixed Mixed Narrative N/R 1989-2012 6 

(mostly 

reviews) 

“Clearinghouse 

always makes 

quality assess-

ments in coop-

eration with 

leading re-

searchers in the 

given field” (p. 

46) 

Mixed effects of 

both service de-

livery models  
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Iacono et 

al. (2021) 

Systematic 

review 

The six co-

teaching mod-

els 

Academic 

achievement 

outcomes 

(assumed) 

Mixed Special 

education 

students 

Narrative N/R 2008-2019 21 “Hansworth’s 

appraisal tool 

(..) PEDro 

scale for ap-

praising the 

quality of RCT 

(Maher et al. 

2003) and 

McMaster 

Guidelines for 

qualitative 

studies (Letts et 

al. 2007).” (p. 

5) 

“Overall, we 

found the research 

base for co-teach-

ing to be limited, 

both in terms of a 

cohesive 

body of studies 

and their quality.” 

(p. 11) 

Lönnqvist 

& 

Sundqvist 

(2016) 

Systematic 

review (of 

published 

studies 

only) 

Co-teaching Mixed Mixed Mixed, 

i.e., gen-

eral and 

special 

education 

students 

Narrative N/R 2002-2015 13 Non More beneficial 

than disadvanta-

geous effects of 

using co-teaching 

on student 

achievement.  

Van 

Garderen 

et al. 

(2012) 

Systematic 

review 

Co-teaching, 

consultation, 

collaborative 

team, coopera-

tive teaming, or 

a combination 

of models (p. 

485) 

 

Mostly aca-

demic 

achievement 

outcomes 

Mixed Mixed, 

i.e., gen-

eral and 

special 

education 

students 

Narrative N/R Unlimited 

-2012 

19 Non “the lack of stu-

dent outcome data 

in strong support 

of 

Collaboration” (p. 

495) 

Welch et 

al. (1999) 

Systematic 

review (of 

published 

studies 

only) 

Team-teaching 

(simultaneous 

presence of two 

educators in a 

classroom set-

ting [p. 38]) 

Mixed  

(see Table 

1, p. 40) 

Mixed of 

qualitative 

and quanti-

tative stud-

ies 

Special 

education 

students 

Narrative 

 

N/R 1980-1997 40 Non “Service delivery 

to students with 

special needs such 

as team teaching 

and problem-solv-

ing teams has not 

kept pace with 

their implementa-

tion” (p. 46) 

166



Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 

 

 

 

 Note: N/R = Not relevant 

TABLE S1. Overview of previously conducted reviews of collaborative models of instruction  

Zigmond 

& Magiera 

(2002) 

Narrative 

review  

Co-teaching Academic 

achievement 

outcomes 

Treatment 

and control 

group de-

signed stud-

ies, only 

Special 

education 

students 

Narrative N/R 1990-1997 4 Non “Despite the cur-

rent and growing 

popularity of co-

teaching, 

research on stu-

dent outcomes in 

this service deliv-

ery 

model is very lim-

ited”  

Quantitative reviews and syntheses 

Khoury 

(2014) 

Systematic 

review 

Co-teaching Academic 

achievement 

outcomes 

Treatment 

and control 

group de-

signed stud-

ies, only 

Special 

needs 

students 

Meta-

analysis + 

meta-re-

gression 

No treatment, 

i.e., assume 

independence 

among effect 

sizes 

1992-2013 20 Non Moderate statisti-

cal significant 

mean effect size, 

i.e., 𝑔 = 0.281 

Murawski 

& Swanson 

(2001) 

Systematic 

review 

Co-teaching Mixed be-

tween so-

cial, behav-

ioral, and 

academic 

outcomes 

Mixed be-

tween sin-

gle-case and 

comparison 

group stud-

ies 

Special 

needs 

students 

Meta-

analysis 

No treatment 

or aggregated 

means 

1989-1999 6 Non Large mean effect 

size, i.e., 0.40  

Willet et 

al. (1983) 

Systematic 

review 

All kinds of 

collaborative 

models of in-

struction (see p. 

409)  

Science out-

comes 

Treatment 

and control 

group de-

signed stud-

ies, only 

Mixed, 

(assumed) 

Meta-

analysis 

No treatment 

or aggregated 

means 

1950-1983 41 Non Moderate statisti-

cal insignificant 

mean effect size, 

i.e., 𝑑 = 0.06 
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S1. Effect Size Calculation 

In this review, we applied a broad range of effect size calculation approaches (Borenstein, 2009; 

Hedges, 2007; Higgins et al., 2019; Morris, 2008; Morris & DeShon, 2002; Pustejovsky, 2016; 

Wilson, 2016; WWC, 2020, 2021) because the literature of collaborative models of instruction 

represents a diverse set of study designs and estimation techniques to deduce treatment effects 

(mean differences) and sampling variances. We generally computed Hedges’s 𝑔 via 

 

 𝑔𝑇 = 𝐽 × (
𝑏

𝑆
) (1) 

   

𝑔𝑇 is the effect size standardized on the total variance (indicated by the subscript 𝑇), i.e., contain-

ing both within- and between-cluster (e.g., classroom or school) variance. 𝑏 is the mean difference, 

𝑆 represents the standard deviation, i.e., the standardizer, and 𝐽 is a small sample bias correction 

equal to 1 − 3/(4 × 𝑑𝑓 − 1). We estimate 𝑑𝑓 in different ways. For single-sited studies (i.e., stud-

ies with only one treatment and control class from the same school, i.e., a site in this review refers 

to classrooms) and simple, randomized trials, we calculated 𝑑𝑓 = 𝑁𝑡 + 𝑁𝑐 − 2. Where 𝑁𝑡 and 𝑁𝑐 

are the sample size of the treatment and control group, respectively. For cluster studies/all multi-

sited studies (i.e., studies having two or more treatment and control classes), we estimated 𝑑𝑓 via 

Equation F.1.2 from the WWC Procedures Handbook 4.1 (2020). 

We obtained the mean difference, 𝑏, from Equation (1) in several ways. Most frequently, 

𝑏 was obtained as a covariate-adjusted mean difference (most frequently pretest-adjusted mean 

differences) from ANCOVA models, regression models, or pre-post results (i.e., difference-in-

differences, henceforth DiD). For studies only presenting results in either ANCOVA, repeated 

measure ANOVA, or related ANOVA tables, we calculated 𝑏 = √𝑀𝑆 × (
1

𝑁𝑡
+

1

𝑁𝑐
)  where 𝑀𝑆 is 

the mean square of the treatment. If 𝑏 was obtainable in multiple ways within the same study, we 

obtained all possible estimates of 𝑏 to check for discrepancies. 

 If studies reported pre-posttest scores on different scales, we calculated 𝑔𝑇 = 𝑔𝑝𝑜𝑠𝑡 −

𝑟(𝑔𝑝𝑟𝑒), where 𝑔𝑝𝑜𝑠𝑡 and 𝑔𝑝𝑟𝑒 are the standardized mean difference of the posttest and pretest 
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scores, respectively. 𝑟 is the pre-posttest correlation. If studies did not report the pre-posttest cor-

relation (as they rarely do for different-scaled outcomes), we imputed 𝑟 = 1, as suggested by 

WWC (2020, p. E-6). If studies provided raw data, we estimated effect sizes and variance compo-

nents by fitting standardized linear regression models using all relevant covariates available. If 

cluster information was given (as in Achilles et al., 2008), we fitted multi-level models guarding 

against any misspecification via cluster robust variance estimation using the clubSandwich 

package in R (Pustejovsky, 2020b).  

We most frequently obtained 𝑆 in Equation (1) via the post-test standard deviations re-

ported separately for the treatment and control groups, respectively. This is  

 

𝑆 = √
(𝑁𝑡 − 1) × 𝑆𝐷𝑡

2 + (𝑁𝑐 − 1) × 𝑆𝐷𝑐
2

𝑁𝑡 + 𝑁𝑐 − 2
 

 

𝑆𝐷𝑡 and 𝑆𝐷𝑐 represent the standard deviation for the treatment and control group, respectively. 

When studies reported the total posttest standard deviation across the treatment and control groups, 

we used this quantity.  

For three studies (Affleck et al., 1988; Nash-Aurand, 2013; Rosman, 1994), we calculated 

𝑆 = √[
𝑀𝑆𝑒𝑟𝑟𝑜𝑟

1−𝑅2 ] +  [
𝑑𝑓𝑒𝑟𝑟𝑜𝑟−1

𝑑𝑓𝑒𝑟𝑟𝑜𝑟−2
]. Where 𝑀𝑆𝑒𝑟𝑟𝑜𝑟 is the ANCOVA mean square error, 𝑑𝑓𝑒𝑟𝑟𝑜𝑟 is the 

model error degrees of freedom, and 𝑅 is the correlation between the covariate(s) and the depend-

ent variable. For the two latter studies, we imputed 𝑅 = .5, and assessed the overall risk of bias to 

be serious, since 𝑟 heavily impacts the size of the effect. For two studies (Mathieu, 2019; Muijs & 

Reynolds, 2003), we obtained 𝑆 from level-specific variance components, (i.e., student- and 

school-level variance components) so that 𝑆 =  √𝑆𝑠𝑡𝑢𝑑
2 + 𝑆𝑠𝑐ℎ𝑜𝑜𝑙

2 . For one study (St. John, 2015), 

we were unable to obtain the standard deviation of the posttest scores. Therefore, we calculated 

effect sizes using the pretest standard deviation as the standardizer. 

A general formula expressing how we obtained the sample variance of 𝑔𝑇 can be written 

as (Pustejovsky, 2016; Pustejovsky & Rodgers, 2019) 
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 𝑉𝑔𝑇
=  𝐽2 × (𝑊 + 𝑃) (2) 

 

where the first term 𝑊 in the parenthesis is the scaled/standardized sampling variance of 𝑏 from 

Equation (1), i.e., (
𝑠𝑒𝑏

𝑆
)

2

, which expresses the contribution of the variability of 𝑏, whereas 𝑃 “cap-

tures the contribution of the variance of [𝑆]—that is, how precisely estimated is the scale [/stand-

ard deviation] of the outcome” (Pustejovsky & Rodgers, 2019, p. 59). We applied several ap-

proaches to estimating 𝑊 tailored to the specific study design and estimation technique 

(Pustejovsky, 2016). For studies reporting DiD and/or ANCOVA estimates, we estimated  

 

 𝑊𝐷𝑖𝐷 = 2 × (1 − 𝑟) × (
1

𝑁𝑡
+

1

𝑁𝑐
)  and 𝑊𝐴𝑁𝐶𝑂𝑉𝐴 = (1 − 𝑟2) × (

1

𝑁𝑡
+

1

𝑁𝑐
) (3) 

 

where 𝑟 is either the pre-posttest or covariate-outcomes correlation. Only three studies reported 𝑟, 

while we were able to estimate 𝑟 from 19 studies either by using Equation 31 from Wilson (2016) 

or the 𝑟-equation from Pustejovsky (2020a). Whenever 𝐹-values were reported from ANCOVA 

and ANOVA (i.e., effect sizes from 14 studies), we calculated 𝑊 =
𝑔𝑇

2

𝐹
. This made it possible to 

reliably calculate 𝑊 in cases where it was impossible to obtain an estimate of 𝑟. For one study 

(Wright, 2014), we computed 𝑊 using the reported 𝑡-value, because 𝑡2 = 𝐹. For studies in which 

it was neither possible to obtain 𝑟 or 𝐹 (i.e., effect sizes from 27 studies), we imputed 𝑟 following 

the recommendation from WWC, meaning that we imputed 𝑟 = .5 for DiD and 𝑟 = 1 for AN-

COVA models into Equation (3) so that 𝑊 reduces to 

 

 

1

Nt
+

1

Nc
=  

𝑁𝑡 + 𝑁𝑐

𝑁𝑡 × 𝑁𝑐
 

 

(4) 

Equation (4) equals 𝑊 for simple, independent groups designs. This yields a conservative estimate 

of 𝑊 for pretest- and/or covariate-adjusted effect size variance estimates, but, in this case, it aims 

to control the nominal Type-I error rate (WWC, 2020). Equation (4) is incorporated in all variance 

estimations of 𝑔𝑇 based on posttest scores only. For studies only reporting the total sample size 

across the treatment and control group, we calculated Equation (4) via (
4

𝑁
), where 𝑁 = 𝑁𝑡 + 𝑁𝑐, 

170



Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 

 

 

 

assuming equal sample size across groups. From studies reporting non-standardized regression 

estimates, we estimated 𝑊 =  (
𝑠𝑒𝛽

𝑆
)

2

, and for standardized regression models, 𝑊 = 𝑠𝑒𝛽𝑠𝑡𝑑

2 .  

We most commonly estimated the scale precision, 𝑃, from Equation (2) via 
𝑔𝑇

2

2𝑑𝑓−2
. How-

ever, for simple, independent group design studies that did not account for clustering of students 

and reported post-test scores only, we calculated 𝑃 from WWC’s more complex Equation 5.2 and 

for DiD effect sizes based on different scaled pretest and post-test scores, we used WWC’s Equa-

tion 3.3 (2021). 

If studies reported results across subgroups that were considered to be superficial to the 

analysis of the review, we aggregated the results (see, e.g., Jang, 2010) to avoid inducing an arti-

ficial and unnecessary amount of within-study variability to the review. To further reduce within-

study variance, we only retrieved overall test results when possible, which means that we did not 

calculate effect sizes from all sub-tests if these were reported along with the overall test results. In 

a similar line, we aggregated test results reported across any subdomains/subtests superficial to the 

analysis of this review by averaging mean differences and the sampling variance estimates across 

subscale tests. For example, for Rea et al. (2002), we average test results across reading and writing 

scores to obtain an overall estimate of the student ability in English language arts. Ideally, this 

procedure should be conducted by using the between subtest correlations, but these were not ob-

tainable. Notice, therefore, that the reliability of averaging within-study results is based on the 

assumption of high correlation among subdomain tests. However, we considered the advantage to 

compensate the deficit of this procedure. The main reason for averaging subtest results is that it 

ensures increased comparability among studies since most studies report results at the aggregated 

test level, and secondly, it helps to reduce artificial within-study variability. We aggregated results 

across subtests for Carlson (1984), Rea (2002), and Schulte (1990). 

 

Unit of Analysis 

To ensure that all effect sizes represent the same unit of analysis, i.e., the standardized mean dif-

ferences (SMD), representing the mean difference standardized/scaled by the total variance (i.e., 

containing both within- and between-cluster variance), 𝑔𝑇 (Hedges, 2007; Taylor et al., 2021), we 

conducted various 2-level conversions of the raw calculated effect sizes.  
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Conversion of Single-Sited Study Estimates 

Effect sizes from single-sited studies (i.e., one treatment and control group from the same school) 

were converted to represent effect sizes standardized by the total variance by computing 𝑔𝑇 =

𝑔𝑊 ∗  √1 − 𝜌𝐼𝐶𝐶   and 𝑉𝑔𝑇
= (1 + (𝑛 − 1)𝜌𝐼𝐶𝐶) × 𝑉𝑔𝑊

× (1 −  𝜌𝐼𝐶𝐶). 𝑔𝑊 and 𝑉𝑔𝑊
 are the small-

sample corrected effect size and its sampling variance estimated from the individual student scores 

only. 𝜌𝐼𝐶𝐶 is the intraclass correlation (ICC) for the given outcome, and 𝑛 is the average clus-

ter/class size. We imputed ICC values from Hedges & Hedberg’s (2007) unconditional models 

using the corresponding subject (i.e., mathematics or reading) and grade, following the guideline 

of Hedges (2007) and WWC (2020). We used the reading ICCs for all Arts subjects and the math 

ICCs for all STEM subjects. If effect sizes were calculated on samples aggregated across grades, 

we calculated the mean ICC value across the corresponding grades. The average class size, 𝑛, for 

single-sited studies was estimated from the average class size of the two included classes.  

 

Conversion of Results Reported at the Cluster Level 

For studies reporting estimates at the cluster/classroom level only (i.e., LaFever, 2012; Southwick, 

1998), we first calculated effect sizes standardized by the between-cluster standard deviation, 𝑑𝐵, 

either from Equations 11 and 12 or 21 and 22 from Hedges (2007), depending on whether the exact 

class sizes were reported for all included classrooms. Then, we estimated 𝑔𝑇 = 𝐽 × 𝑑𝐵 × √𝜌𝐼𝐶𝐶  

and 𝑉𝑔𝑇
=  𝐽2 × 𝑉𝑑𝐵

× 𝜌𝐼𝐶𝐶, imputing 𝜌𝐼𝐶𝐶 from Hedges & Hedberg’s (2007) unconditional mod-

els based on the general student population as well.  

 

Cluster Bias Adjustment 

We conducted approximate cluster design adjustment for all multi-sited studies (i.e., studies with 

more than one treatment and control class), including simple RCTs, because collaborative models 

of instruction are provided at the class-level, which naturally creates dependencies among students 

sharing the same classroom, teacher, and student composition, etc., independently of the procedure 

of assignment (Higgins et al., 2019, p. 576). For studies not accounting for nesting of students 

(e.g., in classrooms or schools), we multiplied the design effect 𝜂 =  (1 + (𝑛 − 1)𝜌𝐼𝐶𝐶)  to 𝑊 in 

Equation (2). 𝜌𝐼𝐶𝐶 was rarely reported in primary studies (only in Achilles et al., 2008; Mathieu, 

2019; Muijs & Reynolds, 2003). Consequently, we imputed ICC values from Hedges & Hedberg’s 

(2007) unconditional models using the corresponding subject and grade. If no value of the average 
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cluster/class size was obtainable, we imputed the average cluster/class size to be 5 for special needs 

student samples, 18 for samples with general students only, and 23 for blended samples of students, 

respectively. For studies properly accounting for clustering, we multiplied as upwards bias correc-

tor 𝛾 = 1 −
2(𝑛−1)𝜌𝐼𝐶𝐶

𝑁𝑡+𝑁𝑐−2
  to 𝑊 in Equation (2). Independently of the cluster treatment, we multiplied 

the upward-bias corrector √𝛾 to 𝑔𝑇 in all multisited studies, as suggested by Equation 5.1 in Ap-

pendix E of the WWC Procedures Handbook (WWC, 2021). To illustrate the cluster bias correc-

tion procedure for the sample variance estimates, Equation (2) can generally be described by  

 

 𝑉𝑔𝑇
=  𝐽2 × (𝑊 × 𝜉 + 𝑃) (5) 

   

where 𝜉 either represents 𝜂 or 𝛾, as given above. It is important to emphasize that the cluster bias 

correction is substantially based on approximation, “[h]owever, making no correction for the ef-

fects of clustering at all corresponds to assuming that [𝜌𝐼𝐶𝐶]=0 is often very far from the case, and 

thus it may introduce more serious biases in the computation of variances than using values of 

[𝜌𝐼𝐶𝐶] that are slightly in error” (Hedges, 2007, p. 260). A further justification for using approxi-

mate cluster bias adjustment is that it guards against lower-quilty studies (assuming that lower-

quality studies rarely account for clustering of students) getting disproportionally more weight 

relative to more rigorously conducted studies when estimating average effect sizes. Cluster bias 

correction was further important to do in order to; 1) most reliably estimate between-study vari-

ance, 2) determine the weights used to estimate the overall average effect size, 𝜇, 3) assess the 

uncertainty of the estimation of 𝜇, and 4) assess the extent of uncertainty in the between-study 

variance estimate. Whereas robust variance estimation (RVE) can handle scenario 3), the three 

other scenarios (1, 2, and 4) hinge on the assumption that the sample variance estimation is rea-

sonably accurate. 

 

S2. Mean Effect Size Estimation 

Because we expected at the planning stage of the review (see our protocols) both to find correlated 

and hierarchical effects dependence structures among effect sizes but also because we expected to 

find true random variation among effect sizes both at the between- and within-study levels across 
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all models, our models draw on the correlated-hierarchical effects (CHE) working models. In par-

ticular, we applied three different random-effects models from the newly developed CHE family 

(Pustejovsky & Tipton, 2021) to estimate treatment effects and the corresponding variance com-

ponents. To explicate the models used throughout the paper, assume that we have a collection of 𝐽 

studies, each reporting 𝑘𝑗 ≥ 1 effect size estimates. Then let 𝑇𝑖𝑗 be the effect size estimate i from 

study 𝑗 with a corresponding sample error 𝜎𝑖𝑗, for 𝑖 = 1, … , 𝑘𝑗 and 𝑗 = 1, … , 𝐽. We assumed that 

𝑇𝑖𝑗 is an unbiased estimate of the effect size parameter 𝜃𝑖𝑗 and that 𝜎𝑖𝑗 are fixed and known. This 

can be expressed as 

 

 𝑇𝑖𝑗 = 𝜃𝑖𝑗 + 𝑒𝑖𝑗 (6) 

   

where 𝑒𝑖𝑗 = 𝑇𝑖𝑗 − 𝜃𝑖𝑗  is the sampling error, with E(𝑒𝑖𝑗) = 0 and Var(𝑒𝑖𝑗) = 𝑠𝑖𝑗
2 . We assumed 

across all models that effect sizes coming from different studies were uncorrelated, so 

cor(𝑒ℎ𝑗, 𝑒𝑖𝑙) = 0 when 𝑗 ≠ 𝑙.  

 To explain potential sources of heterogeneity via meta-regression, we assumed the effect 

size estimates represent a sample from some underlying population of effects and that the average 

effect sizes can be explained by a set of covariates or predictors (as Pustejovsky & Tipton, 2021). 

Therefore, let  x𝑖𝑗 denote a row vector of 𝑝 covariates and 𝛽 denote a vector of 𝑝 regression coef-

ficients, so that the meta-regression model can be express as 

 

 𝑇𝑖𝑗 =  x𝑖𝑗𝛽 + 𝑢𝑖𝑗 + 𝑒𝑖𝑗 (7) 

 

where 𝑢𝑖𝑗 represent the variation not accounted for by the covariates. 

 

CHE model 

To estimate the overall average effect size, 𝑔̅, we applied the regular CHE model with effect sizes 

nested in studies. This model usually assumes that there is a constant sample correlation, 𝜌, be-

tween effect size 𝑖 and 𝑚 for 𝑖, 𝑚 = 1, … , 𝑘𝑗 and 𝑗 = 1, … , 𝐽. The CHE model is given by 
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 𝑇𝑖𝑗 = x𝑖𝑗𝛽 + 𝑢𝑗 + 𝑣𝑖𝑗 + 𝑒𝑖𝑗 (8) 

   

where Var(𝑢𝑖𝑗) = 𝜏2,  Var(𝑣𝑖𝑗) = 𝜔2,  Var(𝑒𝑖𝑗) = 𝑠𝑗
2, and Cov(𝑒ℎ𝑗,  𝑒𝑖𝑗) = 𝜌𝑠𝑗

2. 𝜏 and 𝜔 repre-

sent the between-study and within-study SDs, respectively, and 𝑠𝑗
2 =

1

𝑘𝑗
∑ 𝑠𝑖𝑗

2𝑘𝑗

𝑖=1
. For the intercept-

only model, x𝑖𝑗 reduces to a vector of 1’s. As mentioned above, the CHE models imply assuming 

a constant sampling correlation, 𝜌. However, we obtained 𝜌 by estimating Pearson correlation 

from all those studies that provided both mathematics and language arts scores, as suggested by 

Kirkham et al. (2012).  

Albeit our data contains ten studies reporting multiple non-overlapping samples, we did 

not model variability at the sample level of our model(s) since we conducted a likelihood ratio test 

of the variance components, showing that the fit of the four-level model was not significantly better 

than the three-level model (Viechtbauer, 2022). 

 

S3. Subgroup Analyses and Meta-Regression 

For subgroup analyses investigating if the effects of collaborative models of instruction vary as a 

function of a range of pre-specified categorical predictors/moderators, we either applied the Sub-

group Correlated Effects Plus (SCE+) model or the Correlated Multivariate Effects Plus (CMVE+) 

model. Although the latter model potentially yields more precise estimates and most adequately 

captures the true dependency among effect sizes within and across subgroup dimensions, simula-

tion results suggest that this model only works under certain narrow conditions (Pustejovsky & 

Tipton, 2021). We decided whether the CMVE+ model was feasible by using what we call over-

lapping tables, suggested in the supplementary material to Pustejovsky & Tipton (2021). Find 

these analyses in Tables S2 and S3 and the condition for when the CMVE+ model works reliably 

in the next section (S4) below. The SCE+ is given by 

 

 𝑇𝑖𝑗 = ∑ 𝑑𝑖𝑗
𝑐 (x𝑖𝑗βc + 𝑢𝑐𝑗 + 𝑣𝑐𝑖𝑗) + 𝑒𝑖𝑗

𝐶

𝑐=1

 (9) 
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where Var(𝑢𝑐𝑗) = 𝜏𝑐
2, Var(𝑣𝑐𝑖𝑗) = 𝜔𝑐

2, Cov(𝑢𝑏𝑗 ,  𝑢𝑐𝑗) = 0, and Cov(𝑒ℎ𝑗, 𝑒𝑖𝑗) =

𝜌𝑠𝑗
2 ∑ 𝑑ℎ𝑗

𝐶 𝑑𝑖𝑗
𝐶𝐶

𝑐=1 . Here 𝑑𝑖𝑗
𝐶  is an indicator of whether a given effect size falls within the given sub-

group. The SCE+ model is based on the assumption that outcomes from the same study falling 

into the same subgroup category are correlated but outcomes from the same study falling into 

different subgroup categories are assumed to be independent.  

Next, the CMVE+ model is given by 

 

 𝑇𝑖𝑗 =  x𝑖𝑗β + ∑(𝑑𝑖𝑗
𝑐 𝑢𝑐𝑗 +  𝑑𝑖𝑗

𝑐 𝑣𝑐𝑖𝑗) + 𝑒𝑖𝑗

𝐶

𝑐=1

 (10) 

 

where Var(𝑢𝑐𝑗) = 𝜏𝑐
2, Cov(𝑢𝑏𝑗 ,  𝑢𝑐𝑗) = 𝜓𝑏𝑐𝜏𝑏𝜏𝑐, Var(𝑣𝑐𝑖𝑗) = 𝜔𝑐

2, Cov(𝑣𝑏𝑖𝑗 ,  𝑣𝑐𝑖𝑗) = 𝜁𝑏𝑐𝜔𝑏𝜔𝑐, 

and 𝐶𝑜𝑣(𝑒ℎ𝑗,  𝑒𝑖𝑗) = 𝜌𝑠𝑗
2. 𝜓𝑏𝑐 and 𝜁𝑏𝑐 are the correlations between the random effects at the study 

and effect size level, respectively. Unlike the SCE+ model, the CMVE+ model both assumes that 

effect sizes from the same study falling into different subgroups and effect sizes from the same 

study falling into the same subgroup are correlated. Contrary to original subgroups analyses that 

treat each subgroup model as independent (and thereby exclude the opportunity for statistical com-

parison between subgroup means), these above-presented models allow us to model all subgroups 

in one model “by interacting the covariates (x𝑖𝑗) with indicators for each [subgroup] category (𝑑𝑖𝑗
𝑐 ) 

and similarly interacting the random effect-effects terms (𝑢𝑐𝑗) with indicators for each category” 

(Pustejovsky & Tipton, 2021). By using these models, we were, therefore, able to conduct reliable 

(multiple-contrast) Wald tests, including HTZ Wald tests (Tipton & Pustejovsky, 2015), as well 

as Wald tests based on cluster wild bootstrapping (CWB) with 1999 replications (Joshi et al., 

2022). We added the latter tests since recent simulations studies have shown that CWB less con-

servatively controls Type-I errors and yields more power relative to HTZ (Joshi et al., 2022). 

For continuous covariates, we fitted the CHE model presented in Equation (8). All moder-

ators used for investigation were deduced from the theoretical and methodological literature re-

garding relevant moderating factors such as important theoretical constructs and study features. 

Find the list of all relevant moderators we expected to investigate in the pre-registered protocol 

attached to this review. 
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S4. Model Selection  

The main difference between the SCE+ and CMVE+ working models is that the latter allows effect 

sizes from the same study that falls into different subgroup categories to be correlated. Although 

superior to the SCE+ working model in terms of statistical accuracy, the CMVE+ model only 

works adequately under restricted conditions. Specifically, the condition under which the CMVE+ 

model works is when 

1) there are few multivariate dimensions 

2) there are a substantial number of studies and effect sizes available from each dimension. 

3) there are a substantial number of studies having effect sizes from each possible pair of 

outcome dimensions. 

 

To decide if the two latter conditions were in place for the CMVE+ model, we applied overlapping 

tables, as presented below. 

 

TABLE S2. Overlapping table for the subject variable (accepted for CMVE+) 

Subject Arts and  

Social Science  

STEM 

Arts and Social Science 54 (168) 28 (85) 

STEM 28 (70) 48 (113) 

Note: Number of studies and number of effect sizes (in parenthesis) by co-occur-

rence of dependent variable types. 

 

TABLE S3. Overlapping table for the type of student sample (not accepted for CMVE+) 

Sample Blended  General 

students 

Special needs 

students 

Blended  19 (61) - 1 (2) 

General students - 26 (79) 12 (32) 

Special needs students  1 (2) 12 (32) 42 (141) 

Note: Number of studies and number of effect sizes (in parenthesis) by co-occur-

rence of student samples. 

 

We only fitted the subject covariate to the CMVE+ model since it was the only moderator variable 

accommodating all of the necessary conditions, as shown in Table S2.   
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S5. Descriptive Statistics  

FIGURE S1. Number of studies included in the meta-analysis by mean grade of study 

 

Figure S1 displays the 76 included studies by the mean grade of the study. It shows that most 

grades are well represented. However, 12th-grade students were absent from the pool of included 

studies.  
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FIGURE S2. Primary study sample sizes 
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TABLE S4. Distribution of treatment group sample sizes from primary studies 

Mean SD P0 P25 P50 P75 P100 

158 494.60 5 19 37 79 4016 

 

TABLE S5. Distribution of control group sample sizes from primary studies 

Mean SD P0 P25 P50 P75 P100 

232 812.20 5 20 55 120 6765 

 

TABLE S6. Distribution of total sample sizes from primary studies 

Mean SD P0 P25 P50 P75 P100 

391 1286 10 44 102 201 10781 

 

TABLE S7. Distribution of effective sample sizes from primary studies 

Mean SD P0 P25 P50 P75 P100 

18 20.27 5 8 12 18 113 

 

Estimation techniques used in primary studies 

Table S8 below describes from which kind of estimation techniques effect sizes were obtained. 

Most often, pre-test adjustment was conducted via difference-in-differences techniques1, i.e., 149 

(50%) of the effect sizes are calculated from some kind of pre-posttest score means. A substantial 

amount of the effect sizes were further calculated from some kind of adjusted means, i.e., 69 (23%) 

effect sizes from ANCOVA and 41 (13%) via regression, respectively. Only 10 (3%) effect sizes 

were obtained from ANOVA models and 29 (9%) effect sizes from post-test means, respectively.  

 

TABLE S8. Further description of effect size characteristics 

Effect size characteristics Studies (J) Effect sizes (K) PercentageK 

% ES from ANCOVA 17 69 0.238 

% ES from ANOVA 4 12 0.041 

% ES from Diff-in-Diffs 41 139 0.479 

% ES from raw posttest means 10 29 0.1 

% ES from regression 11 41 0.141 

 

 
1 This also includes studies reporting of gain, growth, and development scores. 
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Outcomes distributions and outlier tests 

FIGURE S3. Empirical distribution of effect size estimates  

 

 

Note: Distribution of the estimated effect sizes. Solid lines indicate the lower and upper quantiles, respectively. 

“Dashed lines indicate the 1st quartile minus three times the inter-quartile range and the 3rd quartile plus three times 

the interquartile range. Effect sizes outside of the range of dashed lines would be considered outliers according to 

Tukey’s (1977) definition” (Winters et al., 2022, supplementary material). 
 

TABLE 9. Distribution of effect size estimates 

Mean SD P0 P25 P50 P75 P100 

0.09 0.42 -1.89 -0.13 0.08 0.31 1.56 

 

FIGURE S4. Empirical distribution of effect size estimates across arts and STEM outcomes 

 

Note: Solid lines indicate the lower and upper quantiles, respectively. “Dashed lines indicate the 1st quartile minus 

three times the inter-quartile range and the 3rd quartile plus three times the interquartile range. Effect sizes outside of 

the range of dashed lines would be considered outliers according to Tukey’s (1977) definition” (Winters et al., 2022, 

supplementary material). 
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TABLE 10. Distribution of effect size estimates across arts and STEM outcomes 

Subject Mean SD P0 P25 P50 P75 P100 

Arts 0.12 0.37 -1.14 -0.09 0.10 0.29 1.31 

STEM 0.05 0.51 -1.89 -0.18 0.05 .33 1.56 

 

FIGURE S5. Empirical distribution of effect size estimates across various subject outcomes 

 

Note: Solid lines indicate the lower and upper quantiles, respectively. “Dashed lines indicate the 1st quartile minus 

three times the inter-quartile range and the 3rd quartile plus three times the interquartile range. Effect sizes outside of 

the range of dashed lines would be considered outliers according to Tukey’s (1977) definition” (Winters et al., 2022, 

supplementary material). 

 

TABLE 11. Distribution of effect size estimates across various subject outcomes 

Subject Mean SD P0 P25 P50 P75 P100 

LA 0.13 0.37 -1.14 -0.09 0.11 0.29 1.31 

Math 0.03 0.52 -1.89 -0.22 0.05 0.31 1.56 

Science 0.22 0.4 -0.4 -0.01 0.09 0.5 0.98 

 

 

S6. Risk of Bias (RoB) Assessment 

Extended description of RoB assessment 

We slightly modified the used assessment schemes so that they included further questions in the 

reporting domain (D7) regarding whether any evidence suggested error-prone reported results 

(e.g., studies reporting extremely small standard deviations, etc.) or if any measures of variability 

were retrievable from the study. Studies receiving moderate or serious judgments for four domains 

or more were assessed to have a serious risk of bias overall. Domains with a substantial amount of 
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missing information were rated as ‘high’ risk of bias, but studies were not excluded. In addition, 

we considered primary study data, where 20% of the treatment variable observations were missing 

in the realized sample, to be of serious risk of bias due to missingness.  

For a few studies, we excluded a part of the total number of effects. For example, we ex-

cluded effect sizes for “At-risk”-students for Haselden (2004) and Saint-Laurent (1998). In the 

former case because the treatment for the “At-risk”-students were provided outside the general 

classroom, and for the latter, because the “At-risk”-student control group was comprised of both 

students from special education settings and students from single-taught general education settings 

which made a substantial interpretation of these effects infeasible. However, we had no reason to 

question the accuracy of the general student comparisons in the respective studies. For Maultsby-

Springer (2009), we excluded two out of four effect sizes due to reporting errors that surfaced 

when we calculated the pre-posttest correlation, 𝜌, from the reported paired t-tests.2 We had firm 

no reason to suspect the accuracy of the remaining effect sizes, and, therefore, they were included. 

On the other hand, we excluded one study (Christie, 2020) in which only one result out of twelve 

effect sizes seemed to be trustworthy based on the paired t-test values.3 The serious ROB assess-

ment was often reached because results substantially diverged, for example, between effect sizes 

calculated from raw pre-posttest scores and adjusted means and ANCOVA statistics. Only effect 

sizes from two studies belonging to the RCT family received a high overall RoB assessment. One 

study (i.e., Garcia, 2020) received high risk of bias due to deviation of the intended intervention, 

and one study (i.e., Parrello, 2010) because of high risk of bias due to measurement error. Parrello 

used grade scores from treatment classrooms in which she both taught and graded the students.  

 

Extra RoB figures and tables 

Figures S6 and S7 illustrate unweighted summary RoB plots for the ROBINS-I and RoB 2 assesses 

studies and effect sizes, respectively. Figures S8 and S9 illustrate ROBINS-I RoB plots disaggre-

gated between quasi-experimental and observational studies, respectively. The concrete assess-

ments behind the plots are presented in Tables S12 and S13. 

 

 
2 See the effect size calculation at https://osf.io/fby7w/. 
3 Find the calculation in effect size calculation document at https://osf.io/fby7w/. 
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FIGURE S6. Unweighted ROBINS-I assessment summary plot   

 

FIGURE S7. Unweighted ROB 2 assessments summary plot  

 

FIGURE S8. Weighted ROBINS-I assessment summary plot for quasi-experimental studies, only 
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FIGURE S9. Weighted ROBINS-I assessment summary plot for observational studies, only  

 

 

TABLE S12. ROBINS-I Table – percent of effect sizes across domains and judgments 

RoB as-

sessment  

D1 

J, K 

(%) 

D2 

J, K (%) 

D3 

J, K 

(%) 

D4 

J, K (%) 

D5 

J, K (%) 

D6 

J, K (%) 

D7 

J, K (%) 

Overall 

J, K (%) 

Low 5, 33 

(14.7%) 

50, 174 

(77.3%) 

44, 145 

(64.4%) 

28, 95 

(42.2%) 

54, 185 

(82.2%) 

62, 201 

(89.3%) 

6, 22 

(9.8%) 

1, 2 

(0.9%) 

Moderate 60, 179 

(79.6%) 

17, 50 

(22.2%) 

21, 58 

(25.8%) 

25, 75 

(33.3%) 

7, 23 

(10.2%) 

8, 22 

(9.8%) 

55, 184 

(81.8%) 

29, 88 

(39.1%) 

Serious 6, 13 

(5.8%) 

1, 1 

(0.4%) 

8, 22 

(9.8%) 

14, 55 

(24.4%) 

6, 17 

(7.6%) 

2, 2 

(0.9%) 

8, 19 

(8.4%) 

45, 135 

(60%) 
Note. J = number of studies. K = number of effect sizes. NA, i.e., missing information judgments were given a serious 

risk of bias judgment. 

 

TABLE S13. RoB 2 Table – percent of effect sizes across domains and judgments 

RoB assessment  D1 

J, K (%) 

D2 

J, K (%) 

D3 

J, K 

(%) 

D4 

J, K (%) 

D5 

J, K (%) 

Overall 

J, K (%) 

Low 8, 37 

(67.3%) 

6, 48 

(87.3%) 

9, 54 

(98.2%) 

7, 46 

(83.6%) 

1, 6 

(10.9%) 

1, 6 

(10.9%) 

Some concerns 2, 18 

(32.7%) 

2, 4 

(7.3%) 

1, 1 

(1.8%) 

3, 8 

(14.5%) 

8, 49 

(89.1%) 

6, 45 

(81.8%) 

High NA 

 

1, 3 

(5.5%) 

NA 

 

1, 1 

(1.8%) 

NA 

 

2, 4 

(7.3%) 
Note. J = number of studies. K = number of effect sizes. NA, i.e., missing information judgments were 

given a serious risk of bias judgment. 
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S7. Sensitivity Analysis of Mean Effect Size 

FIGURE S10. Sensitivity of meta-analysis parameter estimates to the assumed value of the sam-

pling correlation (𝜌) between effect size estimates. 
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Model Check – Leave-One-Study-Out Analyses 

Figure S11 below displays the impact on the overall mean effect size by leave-one-study-out at a 

time. Leaving one study out generally does not have any significant impact on the estimation of 

the weighted overall mean effect size, 𝑔̅. For all studies, the substantial interpretation of the mag-

nitude of 𝑔̅ does not change, and all models yield statistically significant results. However, leaving 

out Mathieu (2019) had quite an impact on the point estimate and its precision. As can be seen 

from Figure S11, Mathieu did have a substantial significant impact on the between-study SD, 𝜏. 

In fact, 𝜏 dropped to zero when Mathieu was omitted from the analysis. This can suggest that the 

between-study variance estimation is fragile, but it can also indicate that Mathieu estimated a true 

different effect relative to the rest of the included studies. Furthermore, leaving out Mathieu did 

have an impact on the within-study variance, but to a lesser extent than for 𝜏, and it did not change 

the overall conclusion that a substantial amount of true variation is present in the data. Yet the total 

SD seemed to be constant, even when leaving Mathieu out, confirming the presence of true random 

variation within this body of literature. This is further supported by the fact that the 𝐼2 and 𝑄-

statistics seem to be more or less insensible to leaving out any study from the weighted mean effect 

size analysis. 
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FIGURE S11. Impact of leaving one study out on the average effect size

 

Note: Dashed lines and shade indicate the estimated values and the confidence interval from the overall aver-

age effect size of the CHE model presented in the paper.   
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FIGURE S12. The impact of leaving one study out on heterogeneity quantities  
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S8. Correlation Matrix  

TABLE S14. Correlation matrix for covariates 

 
Moderators 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

(1) Aides 1                        

(2) Cotaught -.79 1                       

(3) Team teach -.09 -.53 1                      

(4) Special stud -.16 .21 -.12 1                     

(5) Agg sample .4 -.51 .28 -.52 1                    

(6) General stud -.18 .23 -.12 -.62 -.34 1                   

(7) STEM .06 -.02 -.05 -.23 .03 .22 1                  

(8) Arts & Social Sci. -.06 .02 .05 .23 -.03 -.22 -1 1                 

(9) Primary .18 -.09 -.1 -.21 .24 .02 -.08 .08 1                

(10) High sch. -.15 .16 -.04 -.05 -.18 .21 .15 -.15 -.51 1               

(11) Secondary -.06 -.04 .15 .28 -.11 -.21 -.04 .04 -.66 -.31 1              

(12) Observational -.17 .11 .05 .3 -.19 -.16 -.06 .06 -.23 -.02 .27 1             

(13) QES .01 .04 -.08 -.24 .09 .18 .14 -.14 .38 -.22 -.22 -.68 1            

(14) RCT .2 -.19 .04 -.09 .13 -.01 -.09 .09 -.17 .31 -.08 -.45 -.35 1           

(15) Non standardized -.15 .08 .08 .14 .03 -.19 -.09 .09 .1 -.07 -.05 .06 -.1 .05 1          

(16) Standardized .15 -.08 -.08 -.14 -.03 .19 .09 -.09 -.1 .07 .05 -.06 .1 -.05 -1 1         

(17) Special edu crt -.06 .1 -.08 .75 -.39 -.46 -.19 .19 .02 -.15 .11 .31 -.28 -.06 .18 -.18 1        

(18) General edu crt .06 -.1 .08 -.75 .39 .46 .19 -.19 -.02 .15 -.11 -.31 .28 .06 -.18 .18 -1 1       

(19) Gray literature -.3 .23 .04 -.17 -.08 .26 .21 -.21 .02 .02 -.04 .38 -.02 -.46 -.15 .15 -.01 .01 1      

(20) Journal article .3 -.23 -.04 .17 .08 -.26 -.21 .21 -.02 -.02 .04 -.38 .02 .46 .15 -.15 .01 -.01 -1 1     

(21) Posttest es .06 -.05 .0 -.03 .01 .02 .04 -.04 .0 -.02 .02 -.01 -.14 .18 .09 -.09 .04 -.04 .08 -.08 1    

(22) Covar-adj es -.06 .05 .0 .03 -.01 -.02 -.04 .04 .0 .02 -.02 .01 .14 -.18 -.09 .09 -.04 .04 -.08 .08 -1 1   

(23) Low/mod RoB .19 -.19 .03 -.36 .21 .21 .09 -.09 .14 .12 -.26 -.54 .23 .41 -.26 .26 -.25 .25 -.18 .18 .04 -.04 1  

(24) Serious RoB -.19 .19 -.03 .36 -.21 -.21 -.09 .09 -.14 -.12 .26 .54 -.23 -.41 .26 -.26 .25 -.25 .18 -.18 -.04 .04 -1 1 

Note: Bold numbers indicate correlation above 0.5. 
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S9. Moderator Forest Plots 

FIGURE S14. Forest plot by type of intervention 
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FIGURE S16. Forest plot by subject 
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FIGURE S17. Forest plot by type of effect size 
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FIGURE S18. Forest plot by type of achievement test 
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FIGURE S19. Forest plot by student sample 
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FIGURE S20. Forest plot by grade level 
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FIGURE S21. Forest plot by type of research design 
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FIGURE S22. Forest plot by study outlet 
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FIGURE S23. Forest plot by received overall risk of bias assessment 

200



Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 

 

 

 

S10. Sensitivity Analysis of Moderator Analyses 
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S11. Publication Bias 

We conducted three publication bias or small study effects tests. This includes Trim-and-Fill tests 

based both on all the individual effect sizes and effect sizes aggregated to the study level, CHE 

Egg Sandwich tests accounting for dependent effect sizes using the correlated-hierarchical effects 

models (Rodgers & Pustejovsky, 2021), and step-function selection model tests using three cut-

points (i.e., 𝑝 = 0.05, 0.10, and 0.50) and two cutpoints (i.e. 𝑝 = 0.025 and 1) based on effect 

sizes aggregated to the study level. For all tests, we either used a corrected estimate of the standard 

error, i.e.  𝑆𝐸𝑎𝑑𝑗 = √𝐽2 × (𝑊 × 𝜉) or variance 𝑉𝑎𝑑𝑗 = 𝐽2 × (𝑊 × 𝜉) to avoid the artificial corre-

lation between the effect size and the sampling variance induced by the scale precision estimate, 

𝑃, presented in Equation (5) (Hedges & Olkin, 1985; Pustejovsky & Rodgers, 2019). For sensitiv-

ity analysis purposes, we also transformed effect sizes to avoid artificial correlation among 𝑔 and 

𝑆𝐸𝑔. For this purpose, we used Equation 3 from (Pustejovsky & Rodgers, 2019).  

Results 

As can be seen in Figures S24 and S25, we did not find any sound evidence for publication bias 

or small study effects from the Trim-and-Fill analyses. Further, we conducted two cluster-robust 

Egger’s regression tests fitting the modified effect size standard errors and variance estimates to 

the CHE-RVE model, respectively. From these analyses, we found p = .261 for the former model 

and p = .465 for the latter, further indicating an absence of small study effects and/or publication 

bias. From the employed selection model with cutpoints at p = .05, .10, and .50, using average 

study effect sizes, 𝑔̅ turned out to be statistically insignificant but remained moderate in size, i.e., 

0.077, 95% CI[-0.150, 0.303] with a total SD of 0.282. However, in the sensitivity analysis with 

the selection model using cutpoints at p = 0.025 and p = 1, the overall average effect size 𝑔̅ retained 

to be statistically significant, and 𝑔̅ increased to 0.184, 95% CI[0.0659, 0.303] with a total SD of 

0.238, clearly underpinning the impact of the chosen selection model.  
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FIGURE S24. Trim and Fill funnel plot with modified standard errors across individual and study 

mean effect size estimates 
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FIGURE S25. Trim and Fill funnel plot with transformed individual and transformed mean effect 

size estimates  
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FIGURE S26. Selection model with three cutpoints (𝑝 = 0.025, 0.10, 0.50, and 1) 

 

FIGURE S27. Selection models with cutpoints (𝑝 = 0.025 and 1) 
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S12. Exploratory Analyses 

Table S16 presents subgroup mean differences between effect sizes based on different control 

groups used to calculate effect sizes from samples of special needs students to investigate if one 

of the alternative service delivery models was better than the other. We did not find any statistical 

differences between the two groups, suggesting that special education and single-taught general 

education classrooms have equal effects on the academic achievement of students with special 

needs or disabilities.  

TABLE S16: Subgroup analysis between special and general educations control groups 

Subgroup   Unadjusted effects Covariate-adjusted effectsa

Coefficient Studies 

(J) 

ES 

(K) 

Est. 

[95 % CI] 

Satt. 

df 

SD 

(𝜏 + 𝜔) 

Est. 

[95 % CI] 

Satt. 

df 

SD 

(𝜏 + 𝜔) 

Control group 

General education 11 39 0.086 

[-0.222, 0.395] 

7.6 0.421 -0.034

[-0.338, 0.271]

12.6 0.402 

Special education 32 96 0.178* 

[0.025, 331] 

26 0.311 0.070*

[-0.114, 0.256]

17 0.317 

HTZ Wald test  

p values (CWB) 

0.556 

(0.579) 

0.491

(0.494)

*p < .05. **p < .01, ***p < .001. Note. a) The below results are adjusted for school level and subject differences.
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Appendix 3: OSF Preregistered Protocol (Second Version) 

First version registered June 8, 2020. Find at https://bit.ly/3nhVX3H. 

Second version registered November 1, 2021 (this version). 

Study Information 

1. Title:

“The Effects of Co-Teaching and Related Collaborative Models of Instruction on Stu-

dent Achievement: A Systematic Review and Meta-Analysis”

1.1. Identification: This report is the second pre-registered protocol linked to “The Ef-

fects of Co-teaching and Related Collaborative Models of Instruction on Student 

Achievement: A Systematic Review and Meta-Analysis” study. This report mainly 

draws on the PRISMA-P advice and checklist complemented by the setup of the 

OSF (Open Science Framework) pre-register template. This updated protocol was 

primarily made due to major amendments to the analytical strategy because a new 

method has been developed after the outset of this study (Pustejovsky & Tipton, 

2021). Furthermore, we provide more details on our data extraction procedure, ef-

fect size calculation (including cluster design adjustment of effect sizes), the risk 

of bias assessment, and the analytical strategy and rationale of the study.   

1.2. Update: Minor parts of this meta-analysis function as an update/follow-up study of 

previously conducted meta-analyses authored by Christopher Khoury’s (Khoury, 

2014) and Wendy W. Murawski & H. Lee Swanson’s (2001), respectively. Yet this 

project has a broader focus on comparing the general effects of several kinds of 

two-teacher approaches on both general students and special needs students in the 

pre-defined context of primary and lower secondary schools (i.e. grades 1-12). This 

contradicts the previous meta-analyses since they only concentrate upon the effects 

of co-teaching on students with special needs/disabled students. The present meta-
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analysis has a wider aim of looking at the general effects of co-teaching/team-teach-

ing1 on student achievement for all students. However, one of the planned subgroup 

analyses of this study–in which we compare the special needs student vs. general 

student effect sizes–will be close-to similar to the previously conducted meta-anal-

yses and can be seen as a kind of replication2 of the former conclusions in the field 

of the effects of co-teaching for students with special needs (see section 20). Still, 

our approach differs since we partly use subgroup data from the primary studies.  

  One further key difference between this meta-analysis and the previously 

conducted meta-analyses is that we apply more rigorous inclusion criteria with re-

gard to eligible study designs. We only allow studies that draw on counterfactual 

designs, i.e. studies in which some kind of control group is applied. For studies that 

do not apply randomization, we require for them to be eligible to somehow ensure 

baseline equivalence either by conducting baseline analyses or providing pre-

test/baseline measures/results. This stands in stark contrast to the prior meta-anal-

yses (see Cook, McDuffie-Landrum, Oshita, & Cook (2016) for an overview). 

Furthermore, our effect size calculation will be quite different from the previous 

meta-analyses, since we go beyond the textbook examples of the computation of 

effect size which has been used in the prior analysis, and which has been shown to 

be biased when applied to various common counterfactual designs, especially pre-

posttest and covariate adjusted design (Pustejovsky, 2016). Further, this study is 

distinguished from previous reviews since we conduct a (2-level) cluster design 

 
1 Co-teaching in this regard refers to any kind of two-teacher teaching, and does not solely refer to co-teaching as a 

concept related to special training activities such as inclusion of students with special needs in the mainstream class-

room. Notions like tema-teaching and co-teaching will appear in the text interchangably.  
2 Replication denotes the defintion from Hedges (2019, pp. 3–4) which is as follows: “An important distinction is that 

between reproducibility and replicability. Reproducibility concerns whether another investigator can obtain the same 

results when given the first investigator’s research report and their data (and possibly the computer code they used to 

analyze the data). Replicability concerns whether another investigator can obtain the same results when they obtain 

their own (new) data by attempting to repeat the study that was carried out by the first investigator. A key difference 

between reproducibility and replicability is that the former involves whether two investigators can obtain the same 

answers when given the same data, but replicability involves whether two investigators can obtain the same answers 

from two different datasets. Furthermore, it important to distinguish between “direct replication, which involves the 

replication of an experimental procedure” and “conceptual replication, which involves the repetition of earlier re-

search work with different methods” (Hedges, 2019, p. 4). Hedges’ definition aligns with the definition of IES & NSF 

(2018). The above definition, though, contradicts the definitions coined by Freese & Peterson (2017) and Cartwright 

(1991), in which the denotation of the two concepts are reversed. However, the more substantial definitions of the 

concept are on a general level identical.    
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adjustment for all studies/effect sizes that do not account for clustering at the class 

level (Hedges, 2007). We apply multivariate/multilevel methods with robust 

variance estimation (RVE) that allow multiple effect sizes from the same study to 

be included in the analysis without making false assumptions of independence 

among effect sizes (Pustejovsky & Tipton, 2021), which has been the case in 

previous meta-analyses. It should, furthermore, be mentioned that this study also 

functions as a replication of great parts of a systematic review regarding inclusion 

in education conducted by the Danish Clearinghouse for Educational Research 

(Dyssegaard & Larsen, 2013; Dyssegaard, Larsen, & Tiftikçi, 2013). The 

underlying intention of our study is to depict the clear differences between the 

conduct of narrative synthesis vs. meta-analysis. 

2. Registration (adopted from PRIMA-P checklist):

The study is registered at OSF (Open Science Framework). For more details, see 

https://cos.io/prereg/. Questions regarding the pre-registration contact prereg@cos.io  

3. Authors: Mikkel Helding Vembye (PI), Felix Weiss (CI)

3.1. Contact (PRISMA-P):  

Mikkel Helding Vembye 

Aarhus University 

E-mail: mihv@edu.au.dk or mikkel.vembye@gmail.comd

ORCID-ID: https://orcid.org/0000-0001-9071-0724 

Scan: 
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3.2. Contributions (PRISMA-P): This meta-analysis represents independent research 

from the respective authors. As principal investigator, Vembye will have a greater 

(working) share in the project/article than Weiss. This project aims to be a key part 

of Vembye’s Ph.D. project. Consequently, we deem it natural that Vembye takes a 

larger involvement in the project. Following the advice of Pigott & Polanin (2019), 

Weiss’ main role is to make quality assessments of all screening and analysis parts 

of the project, i.e. literature retrieval, abstract screening, full-text screening, code-

book assessment. We will seek statistical advice for the final statistical analyses. 

Consequently, more authors might be involved in the final project. It is pivotal to 

notice that we are not able to double code all parts of the full-text extraction and 

risk of bias (RoB) assessment due to time/resource constraints of the project. 

Vembye will lead and do all data extraction.   

  

4. Amendments (adopted from PRIMA-P checklist):  

 

This pre-registered protocol is the second one linked to this study. It reflects close-to-

final ideas behind the conduct of the study prior to the final data analysis. Any divergence 

between this protocol and the final analysis will be documented in the final paper.  

 

5. Support (adopted from PRIMA-P checklist): 

 

5.1. Sources: No external financial sources are connected to this study. 

  

5.2. Sponsor: The study has no organizational or institutional funders or sponsors. For 

clarity, see section 5.1. The study is a part of an Open Call scholarship received 

from Aarhus University (Application no. 22606592). 

 

5.3. Role of sponsor or funder: None    
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6. Introduction  

 

6.1        Description/rationale:  

Co- and team-teaching–which we broadly define as two or more teachers/adults sharing 

the responsibility of the within-class instruction/teaching and/or support of the students–is 

widely used in various countries around the world including the US and many parts of 

Europe, especially in the Scandinavian countries (Andersen, Beuchert-Pedersen, Nielsen, 

Thomsen, et al., 2018; Cook et al., 2016; Friend, 2017). The co-teaching literature often 

contends that the co-teaching model (i.e. collaboration between a general educator and a 

special educator in the same physical space/classroom) is a thoroughly tested instruction 

model and thereby an evidence-based teaching practice that has a positive and substantial 

impact on student (academic) achievement, most pronounced on students with special 

needs (Friend, 2017). It is argued that co-teaching outperforms alternative modes of in-

struction, such as special education classrooms and inclusion of students with special needs 

in mainstream classrooms with only one general teacher (Friend, 2017). However, the em-

pirical evidence underpinning this narrative seems to be meager (Cook et al., 2016; 

Murawski & Lee Swanson, 2001). From a policy perspective, the co-teaching literature–

primarily defined as a delivery model directed toward students with special needs–further 

begs the question of what the effects are on general student achievement? The aim of this 

study is, therefore, partly to understand the overall effect on student achievement of col-

laborative models of instruction on general and special needs students in grades 1-12, and 

partly to examine how the effects vary across the general and special needs students. Our 

goal is to examine whether and with what effect co- and team-teaching approaches can 

function for all students as a flexible and subject-specific alternative to reducing the 

teacher-student/adult-student ratio without reducing class sizes (Filges, Sonne‐Schmidt, & 

Nielsen, 2018; Glass & Smith, 1979; Hedges & Stock, 1983). 

  Another focal aim of this study is to investigate if and how effects vary as a function 

of the intervention model, i.e. whether the composition of the two or more teachers/adults 

has varying effects on student achievement. Such knowledge might be important from a 

management and political perspective since great costs can be attached to co-teaching be-

tween two formal-educated teachers. In order to examine this question, we aim to combine 
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the area of co-teaching (Friend, 2017; Murawski & Lee Swanson, 2001) with the fields of 

team-teaching, teacher’s aides/teacher assistants (i.e. two teacher instruction strategies not 

rigorously defined to contain collaboration between a general and special educator, but 

widely defined, i.e. all kinds of collaboration between two of legal-age educational person-

nel simultaneously delivering instruction and support to the students in the same physical 

classroom) (Andersen, Beuchert-Pedersen, Nielsen, Thomsen, et al., 2018; Blatchford, 

Russell, & Webster, 2012; Willett, Yamashita, & Anderson, 1983).3 The study will draw 

on the random-effects model because we believe that this amalgamation of different fields 

of literature creates “unidentifiable sources of variability (i.e., unmeasured covariates)” 

(Valentine, Pigott, & Rothstein, 2010, p. 217). We anticipate finding substantial between-

study and within-study random effects since we allow a diverse set of study designs to enter 

from different content areas to be meta-analyzed. More random effects might be added to 

our models when we obtain more accurate knowledge about the dependence structure of 

the final dataset.   

  Yet another key part of this study is to investigate factors that moderate effects of 

two-teacher instruction on different levels, i.e. study context (e.g. urban vs. rural), study 

design characteristics (e.g. type of treatment and comparison group, research design, etc.), 

outcome assessment (i.e. type of test instrument, effect calculation mode, etc.), participant 

characteristics (e.g. grade, type of student–general vs. special students, etc.), intervention 

characteristics (e.g. duration, subject taught, etc.), and Risk of Bias indicators (Higgins et 

al., 2019). In Table 1, we map the full list of (theoretical and methodological important) 

moderator variables that we try to locate during our data extraction, although we do not 

expect to find enough information for all variables. This way we pursue to examine the 

informational boundaries of this field of literature. Table 1, further, presents the assump-

tions we have regarding the relationships we expect to find between the moderator variable 

and the student achievement. We aim to test moderator effects through meta-regression (T. 

Pigott, 2012; Tipton, Pustejovsky, & Ahmadi, 2019) in order to avoid confounding between 

 
3 See Hattie for a similar fusion of the literature http://www.visiblelearningmetax.com/influences/view/co-

~team_teaching. Although major mistakes are made in the mean effect size calculation. Murawski & Swanson (2001) 

reports a mean effect size of 0.4 not 0.31, and Willett et al. (1983) effect size estimate predicated upon 41 study not 

130.  
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given covariates. Moreover, all effect sizes will be interpreted in relation to relevant bench-

marks since effects sizes vary substantially across year groups of student, subjects, type of 

intervention, and type of student (e.g. special vs. mainstream students), etc. (Bloom, Hill, 

Black, & Lipsey, 2008; Hill, Bloom, Black, & Lipsey, 2008; Kraft, 2020; Lipsey et al., 

2012). Ideally, we would like to employ all available moderators in our meta-regression 

models.  

Last, we will test for publication bias in the co- and team-teaching literature. Fol-

lowing the recommendation made by Hedges & Vevea (2005, p. 161), we will apply a 

range of different tests for publication bias such as Egger’s regression (Egger Sandwich 

i.e. Egger’s regression test using robust variance estimation, i.e. the correlated hierarchical

effects model (CHE), and with variance-stabilized effect sizes (Pustejovsky & Rodgers, 

2019; Pustejovsky & Tipton, 2020; Rodgers & Pustejovsky, 2019) Funnel plot assessment 

(Fernández-Castilla et al., 2020), Trim and Fill test with multiple outcomes, Selection Mod-

els, and if we have time sensitivity analysis for publication bias in meta-analysis4 (Mathur 

& VanderWeele, 2020), and if possible weighted average of the adequately powered 

(WAAP) studies (Stanley, Doucouliagos, & Ioannidis, 2017). The last test functions as a 

sensitivity analysis. We will only conduct the WAAP test if we have a sufficient number 

of adequately powered effect sizes.  

7. Objective (adopted from PRIMA-P checklist):

7.1. Main research questions: Do collaborative models of instruction have a positive, 

substantial significant impact on students’ academic achievement?  

7.1.1. Research sub-questions:  

Does the magnitude effect of collaborative models of instruction vary as a 

function of theoretical and methodological focal moderator variables5? 

4 See https://cran.r-project.org/web/packages/PublicationBias/index.html 
5 Theses are defined from theory discussed within collaborative models of instruction literature and from empirical 

findings from the meta-analytical literature. 
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8. Hypotheses: 

 

8.1. Main hypothesis:  

1) We assume to find a positive relationship between co-/team-teaching and student 

achievement. Premised upon the previously conducted meta-analyses, we expect 

that collaborative models of instruction have an overall average positive effect of 

approximately around 0.2 to 0.4 standard deviations across all populations of stu-

dents.6 This includes non-disabled/general students as well as students with special 

needs.  

   Table 1 provides an overview of all possible covariates that would ideally 

be studied as sub-hypotheses in a complete/ideal meta-analysis. We aim at testing 

as many of them as possible, obviously restricted by the number of available studies 

and the information about them. Thus the list serves as an ideal model, and we do 

expect some variables to be excluded from the final analysis due to a severe lack of 

required information in the co- and team-teaching literature. Premised partly upon 

the meta-analytical literature (Rothstein, Sutton, & Borenstein, 2005) and partly on 

the content-specific literature of co- and team-teaching (Cook et al., 2016), the var-

iables presented in Table 1. represents what we consider to be the most important 

factors to examine in the fields of meta-analysis and collaborative models of in-

struction, respectively. Most of our hypotheses are deduced from empirical findings 

in the fields of meta-analysis and co-/team-teaching, respectively. We do not elab-

orate on any exact magnitude of the direction on the presented variables from Table 

1. However, we recognize that minor statistical significant effects do not necessarily 

have substantial practical importance. Table 1 is inspired by Dietrichson et al. 

(2017), Pigott (2012), and Lipsey (2009). Notice, red text in Table 1 indicates that 

the given variable has been removed from the original protocol and thereby also 

from the final analysis.  

  

 

 
6 This does not mean that the efficacy of the intervention cannot vary as a function of the population composition 

(Borenstein et al., 2009). That is also why we conducted sevaral test for heterogeneity to better understand the varia-

bility of the efficacy of the two-teacher intervention.  
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Table 1. Moderator Variables and Related Hypotheses of the Directions of the Variables 

Variable Moderator Type Data Type Description Direction of Assumed 

Relationship (- 0 +) 

Subject Outcome  

assessment 

Categorical 1) STEM subjects 

2) Arts subject (including 

ELA and social sciences) 

 

+ (We expect to find 

substantial differences 

between the science, 

math, with language arts 

(ELA) yielding larger 

effects) 

 

Type of test Outcome  

assessment 

Categorical 1) Standardized  

2) non-standardized test 

- (We assume that 

standardized test yields 

smaller effect sizes than 

non-standardized test 

because standardized 

tests usually represent  

broader subject-related 

content) 

 

Time from baseline Outcome  

assessment 

Continuous Number of months from 

baseline  

 

 

 

 

Follow-up (more 

than three months 

from the end of the 

intervention) 

Outcome 

assessment 

Categorical 1) Yes  

2) No 

 

- (we expect the inter-

vention effect to fade 

out over time) 

Covariate adjusted 

effect size 

Effect size  

calculation 

 

Categorical 1) Yes 

2) No 

- We expect covariate 

adjusted effect size to 

yield smaller effect size 

relevative to effect sizes 

calculated from posttest 

scores. 

 

Pre-test adjusted ef-

fect size 

Effect size  

calculation 

 

Categorical 1) Yes 

2) No 

- We expect pretest ad-

justed effect size to 

yield smaller effect size 

relevative to non-pretest 

adjusted effect sizes 

Date of publication Study level Continuous Year of publication 

 

0 (We expect to find no 

impact of the year of 

publication on student 

achievement) 

 

 

Publication type  Study level Categorical 1) Published (scientific 

journal/peer review) 

2) Unpublished7 

 

+ (Larger effect sizes 

for published literature 

are expected, see 

Cheung & Slavin 

(2016)) 

Time to publication Study level Continuous Time from initiations of in-

tervention to publication 

 - (the effect size will 

decrease as a function of 

 
7 Unpublished research in this sense refers to “not independently edited or unrefereed” (White, 2009, p. 61). 
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the time gap from the 

start of the intervention 

to publication i.e. large 

time gaps are expected 

to yield smaller effect 

sizes)  

 

Design Methodological Categorical 2) RCT (including cluster 

and/or block randomized 

trials) 

1) Quasi-experimental 

study design (QES) 

0) Observational study 

- ( (C)RCTs are ex-

pected to yield smaller 

effect sizes since we ex-

pect that confounding 

factors inflate the effect 

sizes of QES and obser-

vational studies) 

 

Randomization (is 

contained in the de-

sign variable) 

Methodological Categorical 1) Random cluster 

2) Random individual 

3) Matched 

4) Convenience  

5 Other 

 

- (In a similar vein, we 

expect randomized de-

signs to yield lower ef-

fect sizes) 

Risk of Bias Methodological Categorical Overall serious risk of bias 

vs. not serious risk of bias 

- (We expect less seri-

ous risk of biased stud-

ies to yield smaller ef-

fects relative to studies 

that have been assessed 

to be of serious 

risk/high risk of bias) 

Treatment Intervention  

characteristic  

Categorical 1) Co-taught 

2) Team-taught (general-

general teachers) 

3) Teacher’s aide 

0 (We hypothesize that 

the type of program 

does not have any sub-

stantial effect, because 

we suppose that having 

one more educational 

personnel in the class-

room by itself will have 

almost equal effects in-

dependently of the for-

mal education of the 

personnel. 

 

Duration  

 

Intervention  

characteristic  

Continuous Duration in weeks. One 

school year = 10 months of 

teaching 

+ (from the co-teaching 

literature we expect du-

ration to have a positive 

impact on the efficacy 

of co- and team-teach-

ing).  

Intensity of  

intervention 

Intervention  

characteristic 

Continuous Sessions per week + (hours/sessions per 

week receiving two-

teaching approaches are 

expected to have a posi-

tive impact on student 

achievement) 
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Implementation 

(covered in the des-

ing variable) 

Intervention  

characteristic 

Categorical 1) Monitored  

2) Not-monitored 

+ (Well-monitored stud-

ies are expected to yield 

greater effect sizes) 

Training Intervention  

characteristic 

Categorical Yes or no + (trained staff is ex-

pected to have a positive 

impact on the imple-

mentation of co-teach-

ing and thereby on stu-

dent achievement) 

 

Quality of collabora-

tion (if applicable) 

Intervention  

characteristic 

Categorical 1) Good  

2) Bad 

3) Other/not gauged 

+ (The co-teaching liter-

ature suggest that the 

collaboration between 

the co-teachers is a piv-

otal component for suc-

cess, therefore we ex-

pect to find a positive 

relationship) 

 

Planning time Intervention  

characteristic 

Categorical Planning time vs. no plan-

ning time 

+ (The co-teaching liter-

ature suggest that the 

planning time prior to 

co-teaching is a pivotal 

component for success, 

therefore we expect to 

find a positive relation-

ship between the 

amount of planning time 

and student achieve-

ment) 

 

Same teacher(s) 

across arms 

Intervention  

characteristic 

Categorical Same teacher(s) vs. not the 

same teacher 

- (we expected that re-

search designs in which 

the the same teachers 

are utilized across arms 

will yield lower effect 

size because the design 

controls the impact of 

random teacher factors.) 

 

Teacher experience  Intervention  

characteristic 

Continuous Average years of experi-

ence  

0 (we don’t expect ex-

perience to have a sig-

nificant effect on the ef-

ficacy of the interven-

tion. This is evidenced 

by Andersen, Beuchert-

Pedersen, Nielsen, & 

Thomsen (2018)) 

 

Comparison group Intervention  

Characteristic 

 

Categorical 1) Single-taught general 

classroom  

2) Special education class-

room/pull-out arrangement 

+ (We expect that effect 

sizes will be greater 

when the comparison 

group is based on one-

teacher class-rooms)  

 

224



 
 

 

Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 
 

 
 

Country Study context Categorical Country of which the study 

is conducted 

 

0  

Type of school  Study context Categorical 1) Public school(s) 

2) Private school(s) 

3) A mixture of public and 

private schools 

 

 

0 

Location Study context Categorical 1) Urban or suburban  

2) Rural  

3) Mixed 

 

0 

Grade Participants and  

sample character-

istics  

Categorical  1) 1-5  

2) 6-8 

3) 9-12 

 

- (We expect effect sizes 

to decrease as a function 

grade) 

 

Student sample 

 

 

Participants and  

sample character-

istics 

 

Categorical 1 General students (GS) 

2 Special needs students 

(SNS) 

3 Aggregate across SNS 

and GS 

+ (We expect special 

needs students to gain 

most from collaborative 

models of instruction) 

 

Gender Participants and  

sample character-

istics 

Continuous Percent of males in the 

sample 

+ (We suppose that 

male thrives more from 

co-teaching than girls 

because distracting be-

havior will more fre-

quently be reduced for 

boys than girls) 

 

Race and ethnicity Participants and  

sample character-

istics 

Continuous Percent of migrant or eth-

nic/racial minority students 

in the sample 

- (We expect that greater 

amounts of migrants 

students represented in 

the sample decrease the 

effect sizes) 

 

Special needs  

students 

Participants and  

sample character-

istics 

Continuous Percentage of students 

classified as special needs 

student in the sample (only 

relevant  

- (We expect co- and 

team-teaching to be less 

efficient when large 

amounts of special 

needs students are rep-

resented in the sample. 

This hypothesis is sug-

gested by the co-teach-

ing literature) 

 

SES composition Participants and  

sample character-

istics 

Categorical 1) Low SES 

2) Low-middle SES 

3) Middle SES 

4) Middle-upper SES 

5) Upper SES 

6) Labeled as “mixed” 

999) Can’t tell 

 

+ (we anticipate to find, 

that populations con-

taining a greater share of 

students with the advan-

taged socioeconomic 

ground will gain more 

from co-/team-teaching 

strategies) 
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Due to time constraints and the expectation that we won’t be able to reach much infor-

mation about these factors, we have removed the time to publication, same teacher across arms, 

time from baseline, quality of collaboration, ethnicity, and SES variables from the original proto-

col. Table 1 does not resemble the final coding schemes in all its details. Find the final coding 

schemes on OSF (https://osf.io/vtjqs/). Table 1 represents a coarse-grained description of the co-

variates of the study, only. Below, we present the variables, we assume to include in our subgroup 

analyses and final meta-regression model. If a factor from Table 1 is not represented in the below 

list of focal variables, it either indicates that we do not anticipate that the will not vary enough the 

be relevant for the model or that we do not expect to find enough relevant information about this 

regard.  

Covariates expected to be included in the final meta-regression model 

Study design characteristics 

1) Design

2) Publication status

3) Risk of bias

Effect size characteristics 

4) Covariate adjusted effect size

Outcome assessment 

5) Subject (and subject x grade)

6) Type of test

7) Follow-up effect size

Intervention characteristics 

8) Treatment

9) Control group

10) Duration

11) Intensity

12) Plan time

13) Training

Sample characteristics 
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14) Grade 

Study context 

15) Location 

 

Design Plan 

 

9. Study type: 

10.   

10.1. A systematic review and a meta-analysis.  

 

11. Blinding: 

 

11.1. Blinding is always a complicated matter in educational field experiments since it 

will often be obvious for the participant/students whether they receive the interven-

tion or not. Consequently, we will not exclude any studies due to the lack of blind-

ing.   

 

11.1.1. If some sort of blinding has been used, we will record this.  

 

12. Study design: 

 

12.1. Aggregated meta-analysis (Cooper & Patall, 2009; T. Pigott, 2012; T. Pigott, 

Williams, & Polanin, 2012; Riley et al., 2008).8  

 

 

 

 

8 Meta-analysis should not be confused with other related concept like meta-synthesis and meta-narrative reviews. 

Meta-analysis in this regard “refer to the statistical analysis of a large collection of analysis results from individual 

studies for the purpose of integrating the finding” (Glass, 1976, p. 3). Meta-analysis ” refer specifically to statistical 

analysis in research synthesis and not to the entire enterprise of research synthesis [/systematic reviewing]” (Cooper 

et al., 2009, pp. 6–7). 
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Sampling Plan 

13. Existing data:

We have finalized the data collection, and we will initiate the final statistical analyses just

after we have re-registered this second protocol.

14. Sample size:

After our literature searches, snowballing across references we have found approximately

135 studies on which effect sizes can be calculated. However, we only include 75 due to

our risk of bias assessment. We will conduct a sensitivity analysis in which we exclude all

studies that entail a high/serious risk of bias to examine how the high/serious risk of bias

studies affect and potentially inflate the average effect size.

15. Eligibility criteria for the meta-analysis (added from the PRISMA-P checklist):

15.1. Population, Intervention, Comparison, Outcome (PICO) + Time: 

Table 2 – PICO+T statement of the study 

The PICO + Time statement of the study 

Population All students enrolled in private or public primary or lower secondary 

schools, including special schools (as the control group). Geographically 

limited to “high-income countries” according to the World Bank Classifi-

cation in 2020.9 We apply this broad definition of the relevant population 

since we would like to test whether the effects of co-teaching vary between 

different age groups/year groups/grades. Percent of disabled students in the 

study population will be recorded as well, if possible. We will only test/in-

clude the country covariate in our model if we encounter that effect sizes 

vary substantially across countries. We do not expect this to be the case. 

We anticipate that most studies have been conducted in the US. 

Intervention variables Having at least two of legal age teachers (age ≤18) in-class during signifi-

cant parts of a session, i.e. approximately 50 percent of a session. This cri-

terion is set quite arbitrarily, and we will modify this if better arguments 

9 
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups 
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come to the fore. Notice, if a class has two teachers but one is pulling out a 

specific group of students (e.g. students with special needs), we consider 

such strategies as special education. Nevertheless, we have left this cate-

gory widely open in order to ensure an inclusive approach towards the body 

of literature concerning various kinds of two-teacher instruction strategies 

(Cooper, 2015). Consequently, “having two of legal age teachers during the 

instruction time” refers to any kind of combination of adults/teachers. It 

includes e.g. a combination of a general and special education teacher as 

well as two general education teachers or a general education teacher 

working together with a teaching assistant/aide without a formal teaching 

degree. However, it is pivotal that the intervention is provided in-class 

during regular school time. Two-teacher for after-school or holiday 

programs will be excluded.   For the final analysis, we might end up with a 

more concise definition of the intervention, but we take this 

inclusive/open/abstract approach to “allow unexpected operationalizations 

to get caught in [our] … search net.” (Cooper, Hedges, & Valentine, 2009, 

p. 23). See Cooper (2015, p. 37) for similar arguments and the definition of 

multiple operationism. 

 

Comparison groups Student groups who exclusively have received/receive instruction in gen-

eral classrooms from a single teacher or another type of educational per-

sonnel, for example, substitute teachers, and students who have received 

less than two weeks of co-teaching throughout their entire schooling (see 

section Time below for further argument regarding this demarcation). Fur-

ther, we allow special education classrooms to be comparison group since 

these are often assumed in the literature to be less efficient compared to the 

inclusive co-teaching classroom for special needs students. We focus on 

these two comparisons since we consider these being the most relevant and 

natural alternatives to two-teacher instruction, especially for special needs 

students. Furthermore, these comparisons most adequately resemble the 

“treatment as usual” whereas we consider interventions such as reducing 

class sizes as an alternative intervention to reducing the student-adult ratio. 

Therefore, we do not employ class size reduction as an eligible comparison 

since this comparison responds to a question different from the one we aim 

to answer. In our final model, we will test if effect sizes vary as a function 

of the control group used to calculate the effect sizes. See section 20 for 

elaboration.    

 If/when multiple interventions are compared to the same control 

group, we account for the dependency between the comparisons via robust 

variation estimation (RVE). RVE allows maximum use of information re-

trieved on each study. (Pigott & Polanin, 2019, p. 12; Pustejovsky & 

Tipton, 2020). To make the most fine-grained analysis of studies with mul-

tiple interventions compared to the same control group, we strive to calcu-

late the covariance of effect size measure via equation 19.19 from Gleser 
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& Olkin (2009) and Wei & Higgins (2013), which will be used for con-

structing the final covariance matrix for the CHE model.10 It can be the case 

that, we will drop constructing individual covariance matrix simply be-

cause it can be complex to construct and will take to much time.   

Outcome variables/ 

Dependent measures 

All kinds of academic achievement tests such as grades, leaving 

examination, marks for the year's work, national test, large-scale assess-

ment test, teacher-developed test, researcher-developed test, textbook test, 

etc. If present, we allow IQ-tests to function as a proxy for student achieve-

ment as well if it is measured prior to the posttest scores.  

Key outcomes for this study are reading/language arts/foreign 

language achievement, mathematics achievement, and science achieve-

ment. One of the key goals of the study is to test whether effect sizes vary 

across the taught subjects. Among other things, we record the type of 

test/measurement (i.e. standardized vs. non-standardized) and we will con-

trol for this factor in our final (hierarchical) meta-regression model (Lipsey, 

2009; Pigott, 2012, p. 22). 

Notice: Due to time constraints, we do not focus upon other potentially im-

portant factors such as; social outcomes, attitudinal outcomes, illegal ab-

sence, referrals, and mental health-related outcomes. The effects of two-

teacher instruction on the above-mentioned outcomes begs further research. 

Time 2-weeks period and above “not including pre- and post-testing” (Murawski

& Lee Swanson, 2001, p. 259). We copied this delimitation from the Mu-

rawski & Swanson meta-analysis. To substantiate the argument, we do

assume and argue that the “isolated” effect of co-teaching is small or non-

existent if the students receive less than two weeks of co-teaching during

their school attendance.

Further study characteristic: 

Eligible study designs for the meta-analysis: Studies to be included will be those using 

quantitative data for identifying the effects of co-teaching and allowing us to calculate 

counterfactual effect sizes (i.e. those containing control groups) for co- and team-

teaching interventions. This includes studies/designs as: 

1) (Cluster or/and block) Randomized controlled trials: Where districts, school,

10 CHE model here refers to the entire family of models mentioned in Pustejovsky & Tipton (2020). 
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classrooms, or students are assigned randomly to either the treatment or control group

  

2) Quasi-experimental designs: Where alternative procedures for allocation are used, 

e.g. date of birth, convenience, etc., but the intervention has been manipulated by the 

researcher.   

 

3) Observational studies: Where participants or groups are assigned to conditions non-

randomly and the researcher does not have any impact on the delivery of the 

intervention. These include Regression Discontinuity Designs, Propensity Score 

Matching, Exact Matching, Matching in general, Instrument variable, Natural 

Experiments, Difference-in-differences techniques, etc. (Dietrichson, Bøg, Eiberg, 

Filges, & Jørgensen, 2016).   

    We will examine the differences between these designs since it is well 

known in the educational research that these designs tend to yield substantially 

different effect sizes with QES and observational studies yielding the larges effect 

sizes (Cheung & Slavin, 2016). Furthermore, for quasi-experimental and observational 

studies to be included in this review, the study much somehow examine baseline 

equivalence or provide some pretest achievement scores. This demarcation of the 

review is inspired the below quatations provided by Morris (2008, p. 365):   

 

“The PPC [Pretest-Posttest-Control] design has a number of advantages over other 

common designs in evaluation research. The posttest only with control design (POWC) 

has participants assigned to treatment and control conditions, but participants are 

measured only after administration of the treatment. In quasiexperimental designs, 

preexisting differences between groups could artificially inflate or obscure differences 

at posttest, casting suspicion on results from the POWC design. In contrast, the PPC 

design allows researchers to control for preexisting differences, allowing estimates of 

treatment effectiveness even when treatment and control groups are nonequivalent 

(Cook & Campbell, 1979; S. B. Morris & DeShon, 2002). Even in experimental de-

signs, where preexisting group differences are controlled through random assignment, 

there are advantages to the PPC design. The use of repeated measurements in the PPC 
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design allows each individual to be used as his or her own control, which typically 

increases the power and precision of statistical tests (Hunter & Schmidt, 2004).” 

15.2. Setting of studies: We include countries in the “High Income” lending group ac-

cording to the World Bank11 since we deem these school systems to be more similar 

compared to school systems in ”Low- and Middle Income Countries” – in particular 

in terms of funding.   

Following Murawski and Swanson (2001, p. 259), we require the interventions to 

occur in the same physical space, i.e. in the general classroom. As previously men-

tioned, tutoring of a second teacher outside the classroom or regular school time is 

not included to count as a two-teacher intervention.  

15.3. Timespan of studies: We are exclusively interested in studies conducted in the pe-

riod from 1984-2020. We have selected 1984 to be our starting point because an 

extensive focus on two-teacher approaches begins to surface at this point, and the 

Project STAR is initiated around the same time. Furthermore, we aim to cover the 

period following the team-teaching meta-analysis authored by Willet et. al. (1983). 

15.4. Language of studies: We allow studies in English, German, Danish, Swedish, and 

Norwegian to be included in the present systematic review.  

15.5. Publication status of studies: We allow unpublished12 and grey literature such as 

dissertations, conference abstracts/papers, and working papers, etc since it is well 

known that effect sizes from published and non-published literature vary 

substantially (Cheung & Slavin, 2016). We will use this information to test for pub-

lication bias and related issues (Rothstein et al., 2005). 

11 https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups 
12

Unpublished research in this sense refers to “not independently edited or unrefereed” (White, 2009, p. 61). 

232

https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups


 
 

 

Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 
 

 
 

16. Information sources:  

Describe all intended information sources (such as electronic databases, contact with study 

authors, trial registers, or other grey literature sources) with planned dates of coverage. 

Notice: Due to time constraints, we have not been able to screen all databases hosted 

by EBSCO. Consequently, we have only screened 8006 references instead of approxi-

mately 14000 references13. However, we have done an extensive amount of snowballing 

across references, and hence we hope that we will uncover most of the potential missing 

studies from the EBSCO databases. Nevertheless, this assumption certainly requires future 

investigation.    

 

16.1. Databases and data hosts including trial registers and sources for grey literature:  

Due to resource and time constraints, we have not searched all databases and data-

base engines stated in the original preregistered database protocol. The databases 

and the database engines that we have searched are listed below:  

 

- Scopus  

- ProQuest  

- APA PsycArticles®    

- APA PsycInfnfo®  

- Australian Education Index  

- Ebook Central  

- EconLit  

- Education Database  

- ERIC  

- Periodicals Archive Online  

- ProQuest Dissertation & Thesis Global (for grey literature)  

- Web of Science  

- Social Science Citation Index (SSCI)   

- Science Citation Index Expanded  

- Book Citation Index  

 
13

 Dublicates might be present in this pool of references 
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- Emerging Sources Index  

- British Educational Research Index on EBSCO  

   

Notice: If time allows for it we will fill in the PRISMA-S(earch strategy)  

 

16.2. Other retrieval – contact with study authors:   

We intend to contact key authors in the field after we have compiled all studies 

from the literature and the snowballing of references.   

 

17. Search strategy: 

 

Scopus search string  

TITLE-ABS-KEY("teacher aid*" OR "teacher's aid*" OR "teacher assistant" OR "educational as-

sistant" OR "co*teach*" OR "co*taught" OR "cooperative taught" OR "collaborat* teach*" 

OR "team teach*" OR "second teacher" OR " team taught*" OR "team-based teach*" OR 

"classroom teacher collaborat*" OR "cooperative teach*" OR "pull-in instruction" OR "par-

allel teaching" OR "joint* instruction" OR "team instruction" OR "collaborative instruct*" 

OR "pull-in teaching" OR "co*instruction" OR "two teacher organi*ation" OR "paraprofes-

sional teaching assistants" OR "extra teacher" OR "spare teacher" OR "station teaching" OR 

"joint* teach*" OR "transdisciplinary team approach" OR "alternative teaching" OR "alter-

native teaching" OR "consultation teaching" OR "consultation instruction" OR "co-planned 

teaching" OR "co-planned instruction*" OR "interdisciplinary team teach*" OR "team teach-

ing instruction" OR "clustering of teachers" OR "co-taught class*" OR "collaborat* teaching" 

OR "cooperative teaching school*" OR "cooperative teaching class*" OR "complementary 

instruct*" OR "team taught class*" OR "team-taught*" OR "two-teacher approach" OR "two-

teacher strategy" OR "collaborative team teaching" OR "team-teaching school*" OR "team-

teaching class*") AND (TITLE-ABS-KEY("RCT" OR "randomized control*" OR "random-

ised control*" OR "randomised experiments" OR "randomized experiments" OR "experi-

ment" OR "quasi-experimental" OR "fixed effect*" OR "random effect*" OR "large-scale 

assessment" OR "meta-analysis" OR "systematic review" OR "synthesis" OR "cohort stud*" 

234



 
 

 

Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 
 

 
 

OR "pre-test" OR "post-test" OR "case-control" OR "case series" OR "efficacy" OR "treat-

ment" OR "intervention" OR "effect*" OR "outcome*" OR "correlat*" OR "academic 

achievement" OR "achievement" OR "high school drop-out" OR "upper secondary school 

drop-out" OR "marks for the year's work" OR "year-end grades" OR "end of year marks" OR 

"leaving examination" OR "final exam*" OR "achievement test" OR "social outcome*" OR 

"attitude*" OR "mental health" OR "grade point average" OR "average mark*" OR "tran-

script" OR "effect size*" OR "grad*" OR "mark*" OR "predict*" OR "association" OR "case 

stud*" OR "observation*" OR "cluster random*" OR "survey" OR "matching" OR "matched" 

OR "impact*" OR "performance" OR "consequence*" OR "test*" OR "grade transcript" OR 

"transcript of record" OR "absence" OR "influenc*")) AND NOT(KEY("higher educ*" OR 

"kindergarten" OR "college" OR "undergraduate" OR "post*secondary" OR "pre*school" OR 

"vocational education")) AND ( LIMIT-TO ( AFFILCOUNTRY,"United States" ) OR 

LIMIT-TO ( AFFILCOUNTRY,"United Kingdom" ) OR LIMIT-TO ( AFFILCOUN-

TRY,"Australia" ) OR LIMIT-TO ( AFFILCOUNTRY,"Canada" ) OR LIMIT-TO ( AF-

FILCOUNTRY,"Germany" ) OR LIMIT-TO ( AFFILCOUNTRY,"Italy" ) OR LIMIT-TO ( 

AFFILCOUNTRY,"Netherlands" ) OR LIMIT-TO ( AFFILCOUNTRY,"Spain" ) OR 

LIMIT-TO ( AFFILCOUNTRY,"France" ) OR LIMIT-TO ( AFFILCOUNTRY,"Japan" ) 

OR LIMIT-TO ( AFFILCOUNTRY,"Taiwan" ) OR LIMIT-TO ( AFFILCOUNTRY,"South 

Korea" ) OR LIMIT-TO ( AFFILCOUNTRY,"Sweden" ) OR LIMIT-TO ( AFFILCOUN-

TRY,"Switzerland" ) OR LIMIT-TO ( AFFILCOUNTRY,"Israel" ) OR LIMIT-TO ( AF-

FILCOUNTRY,"Belgium" ) OR LIMIT-TO ( AFFILCOUNTRY,"Singapore" ) OR LIMIT-

TO ( AFFILCOUNTRY,"Finland" ) OR LIMIT-TO ( AFFILCOUNTRY,"Norway" ) OR 

LIMIT-TO ( AFFILCOUNTRY,"Ireland" ) OR LIMIT-TO ( AFFILCOUNTRY,"Hong 

Kong" ) OR LIMIT-TO ( AFFILCOUNTRY,"Greece" ) OR LIMIT-TO ( AFFILCOUN-

TRY,"Saudi Arabia" ) OR LIMIT-TO ( AFFILCOUNTRY,"New Zealand" ) OR LIMIT-TO 

( AFFILCOUNTRY,"Portugal" ) OR LIMIT-TO ( AFFILCOUNTRY,"Austria" ) OR 

LIMIT-TO ( AFFILCOUNTRY,"Denmark" ) OR LIMIT-TO ( AFFILCOUNTRY,"Poland" 

) OR LIMIT-TO ( AFFILCOUNTRY,"United Arab Emirates" ) OR LIMIT-TO ( AF-

FILCOUNTRY,"Czech Republic" ) OR LIMIT-TO ( AFFILCOUNTRY,"Croatia" ) OR 

LIMIT-TO ( AFFILCOUNTRY,"Chile" ) OR LIMIT-TO ( AFFILCOUNTRY,"Slovenia" ) 
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OR LIMIT-TO ( AFFILCOUNTRY,"Cyprus" ) OR LIMIT-TO ( AFFILCOUNTRY,"Hun-

gary" ) OR LIMIT-TO ( AFFILCOUNTRY,"Qatar" ) OR LIMIT-TO ( AFFILCOUN-

TRY,"Kuwait" ) OR LIMIT-TO ( AFFILCOUNTRY,"Slovakia" ) OR LIMIT-TO ( AF-

FILCOUNTRY,"Oman" ) OR LIMIT-TO ( AFFILCOUNTRY,"Estonia" ) OR LIMIT-TO ( 

AFFILCOUNTRY,"Malta" ) OR LIMIT-TO ( AFFILCOUNTRY,"Latvia" ) OR LIMIT-TO 

( AFFILCOUNTRY,"Lithuania" ) OR LIMIT-TO ( AFFILCOUNTRY,"Iceland" ) OR 

LIMIT-TO ( AFFILCOUNTRY,"Luxembourg" ) OR LIMIT-TO ( AFFILCOUN-

TRY,"Puerto Rico" ) OR LIMIT-TO ( AFFILCOUNTRY,"Bahrain" ) OR LIMIT-TO ( AF-

FILCOUNTRY,"Trinidad and Tobago" ) OR LIMIT-TO ( AFFILCOUNTRY,"Barbados" ) 

OR LIMIT-TO ( AFFILCOUNTRY,"Uruguay" ) OR LIMIT-TO ( AFFILCOUN-

TRY,"Liechtenstein" ) OR LIMIT-TO ( AFFILCOUNTRY,"Bermuda" ) OR LIMIT-TO ( 

AFFILCOUNTRY,"British Indian Ocean Territory" ) OR LIMIT-TO ( AFFILCOUN-

TRY,"Monaco" ) OR LIMIT-TO ( AFFILCOUNTRY,"Undefined" ) ) AND ( LIMIT-TO ( 

SUBJAREA,"SOCI" ) OR LIMIT-TO ( SUBJAREA,"PSYC" ) OR LIMIT-TO ( SUB-

JAREA,"PHYS" ) OR LIMIT-TO ( SUBJAREA,"MATH" ) OR LIMIT-TO ( SUB-

JAREA,"BUSI" ) OR LIMIT-TO ( SUBJAREA,"ARTS" ) OR LIMIT-TO ( SUB-

JAREA,"NEUR" ) OR LIMIT-TO ( SUBJAREA,"DECI" ) OR LIMIT-TO ( SUB-

JAREA,"ECON" ) OR LIMIT-TO ( SUBJAREA,"CHEM" ) OR LIMIT-TO ( SUB-

JAREA,"MULT" ) OR LIMIT-TO ( SUBJAREA,"Undefined" ) ) AND ( LIMIT-TO ( 

PUBYEAR,2020) OR LIMIT-TO ( PUBYEAR,2019) OR LIMIT-TO ( PUBYEAR,2018) 

OR LIMIT-TO ( PUBYEAR,2017) OR LIMIT-TO ( PUBYEAR,2016) OR LIMIT-TO ( 

PUBYEAR,2015) OR LIMIT-TO ( PUBYEAR,2014) OR LIMIT-TO ( PUBYEAR,2013) 

OR LIMIT-TO ( PUBYEAR,2012) OR LIMIT-TO ( PUBYEAR,2011) OR LIMIT-TO ( 

PUBYEAR,2010) OR LIMIT-TO ( PUBYEAR,2009) OR LIMIT-TO ( PUBYEAR,2008) 

OR LIMIT-TO ( PUBYEAR,2007) OR LIMIT-TO ( PUBYEAR,2006) OR LIMIT-TO ( 

PUBYEAR,2005) OR LIMIT-TO ( PUBYEAR,2004) OR LIMIT-TO ( PUBYEAR,2001) 

OR LIMIT-TO ( PUBYEAR,2000) OR LIMIT-TO ( PUBYEAR,1999) OR LIMIT-TO ( 

PUBYEAR,1998) OR LIMIT-TO ( PUBYEAR,1997) OR LIMIT-TO ( PUBYEAR,1996) 

OR LIMIT-TO ( PUBYEAR,1995) OR LIMIT-TO ( PUBYEAR,1994) OR LIMIT-TO ( 

PUBYEAR,1993) OR LIMIT-TO ( PUBYEAR,1992) OR LIMIT-TO ( PUBYEAR,1991) 

OR LIMIT-TO ( PUBYEAR,1990) OR LIMIT-TO ( PUBYEAR,1989) OR LIMIT-TO ( 
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PUBYEAR,1988) OR LIMIT-TO ( PUBYEAR,1987) OR LIMIT-TO ( PUBYEAR,1986) 

OR LIMIT-TO ( PUBYEAR,1985) OR LIMIT-TO ( PUBYEAR,1984) OR LIMIT-TO ( 

PUBYEAR,1983) ) AND ( LIMIT-TO ( LANGUAGE,"English" ) OR LIMIT-TO ( LAN-

GUAGE,"German" ) OR LIMIT-TO ( LANGUAGE,"Norwegian" ) OR LIMIT-TO ( LAN-

GUAGE,"Swedish" ) OR LIMIT-TO ( LANGUAGE,"Danish" ) ) 

 

PROQUEST full search: 7907 hits 

Name: 

twoteacher_proquestsearch  

Searched for: 

noft("teacher aid*" OR "teacher's aid*" OR "teacher assistant" OR "educational assistant" OR 

"co*teach*" OR "co*taught" OR "cooperative taught" OR "collaborat* teach*" OR "team teach*" 

OR "second teacher" OR " team taught*" OR "team-based teach*" OR "classroom teacher collab-

orat*" OR "cooperative teach*" OR "pull-in instruction" OR "parallel teaching" OR "joint* in-

struction" OR "team instruction" OR "collaborative instruct*" OR "pull-in teaching" OR "co*in-

struction" OR "two teacher organi*ation" OR "paraprofessional teaching assistants" OR "extra 

teacher" OR "spare teacher" OR "station teaching" OR "joint* teach*" OR "transdisciplinary team 

approach" OR "alternative teaching" OR "alternative teaching" OR "consultation teaching" OR 

"consultation instruction" OR "co-planned teaching" OR "co-planned instruction*" OR "interdis-

ciplinary team teach*" OR "team teaching instruction" OR "clustering of teachers" OR "co-taught 

class*" OR "collaborat* teaching" OR "cooperative teaching school*" OR "cooperative teaching 

class*" OR "complementary instruct*" OR "team taught class*" OR "team-taught*" OR "two-

teacher approach" OR "two-teacher strategy" OR "collaborative team teaching" OR "team-teach-

ing school*" OR "team-teaching class*") AND noft("RCT" OR "randomized control*" OR "ran-

domised control*" OR "randomised experiments" OR "randomized experiments" OR "experi-

ment" OR "quasi-experimental" OR "fixed effect*" OR "random effect*" OR "large-scale assess-

ment" OR "meta-analysis" OR "systematic review" OR "synthesis" OR "cohort stud*" OR "pre-

test" OR "post-test" OR "case-control" OR "case series" OR "efficacy" OR "treatment" OR "inter-

vention" OR "effect*" OR "outcome*" OR "correlat*" OR "academic achievement" OR "achieve-

ment" OR "high school drop-out" OR "upper secondary school drop-out" OR "marks for the year's 

work" OR "year-end grades" OR "end of year marks" OR "leaving examination" OR "final exam*" 
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OR "achievement test" OR "attitude*" OR "mental health" OR "grade point average" OR "average 

mark*" OR "transcript" OR "effect size*" OR "grad*" OR "mark*" OR "predict*" OR "associa-

tion" OR "case stud*" OR "observation*" OR "cluster random*" OR "survey" OR "matching" OR 

"matched" OR "impact*" OR "performance" OR "consequence*" OR "test*" OR "grade tran-

script" OR "transcript of record" OR "absence" OR "influenc*") NOT TI,IF,AB("higher educ*" 

OR "kindergarten" OR "college" OR "undergraduate" OR "post*secondary" OR "pre*school" OR 

"vocational education") AND pd(1983-2020)  

Limited by:  

Date: From 1983 to 2020  

Databases: 

9 databases searched 

• APA PsycArticles®

• APA PsycInfo®

• Australian Education Index

• Ebook Central

• EconLit

• Education Database

• ERIC

• Periodicals Archive Online

• ProQuest Dissertations & Theses Global

These databases are searched for part of the query. 

Notes: 

Saved: June 15 2020 

Web of science: 

- Exclusions by keywords cannot be made here, so we cannot exclude e.g. kindergarten:

have to live with some more hits.

(((TS=("teacher aid*" OR "teacher's aid*" OR "teacher assistant" OR "educational assistant" OR 

"co*teach*" OR "co*taught" OR "cooperative taught" OR "collaborat* teach*" OR "team teach*" 
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OR "second teacher" OR " team taught*" OR "team-based teach*" OR "classroom teacher collab-

orat*" OR "cooperative teach*" OR "pull-in instruction" OR "parallel teaching" OR "joint* in-

struction" OR "team instruction" OR "collaborative instruct*" OR "pull-in teaching" OR "co*in-

struction" OR "two teacher organi*ation" OR "paraprofessional teaching assistants" OR "extra 

teacher" OR "spare teacher" OR "station teaching" OR "joint* teach*" OR "transdisciplinary team 

approach" OR "alternative teaching" OR "alternative teaching" OR "consultation teaching" OR 

"consultation instruction" OR "co-planned teaching" OR "co-planned instruction*" OR "interdis-

ciplinary team teach*" OR "team teaching instruction" OR "clustering of teachers" OR "co-taught 

class*" OR "collaborat* teaching" OR "cooperative teaching school*" OR "cooperative teaching 

class*" OR "complementary instruct*" OR "team taught class*" OR "team-taught*" OR "two-

teacher approach" OR "two-teacher strategy" OR "collaborative team teaching" OR "team-teach-

ing school*" OR "team-teaching class*")  )  AND  (TS=("RCT" OR "randomized control*" OR 

"randomised control*" OR "randomised experiments" OR "randomized experiments" OR "exper-

iment" OR "quasi-experimental" OR "fixed effect*" OR "random effect*" OR "large-scale assess-

ment" OR "meta-analysis" OR "systematic review" OR "synthesis" OR "cohort stud*" OR "pre-

test" OR "post-test" OR "case-control" OR "case series" OR "efficacy" OR "treatment" OR "inter-

vention" OR "effect*" OR "outcome*" OR "correlat*" OR "academic achievement" OR "achieve-

ment" OR "high school drop-out" OR "upper secondary school drop-out" OR "marks for the year's 

work" OR "year-end grades" OR "end of year marks" OR "leaving examination" OR "final exam*" 

OR "achievement test" OR "social outcome*" OR "attitude*" OR "mental health" OR "grade point 

average" OR "average mark*" OR "transcript" OR "effect size*" OR "grad*" OR "mark*" OR 

"predict*" OR "association" OR "case stud*" OR "observation*" OR "cluster random*" OR "sur-

vey" OR "matching" OR "matched" OR "impact*" OR "performance" OR "consequence*" OR 

"test*" OR "grade transcript" OR "transcript of record" OR "absence" OR "influ-

enc*")  )  NOT  (TS=("higher educ*" OR "kindergarten" OR "college" OR "undergraduate" OR 

"post*secondary" OR "pre*school" OR "vocational education")  )))    AND  LANGUAGE:  (Eng-

lish OR Danish OR German OR Norwegian OR Swedish)   

Indexes=SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan=1983-2020 

 

 

 

239



 
 

 

Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 
 

 
 

British Education research Index on EBSCO 

 

DE( (("teacher aid*" OR "teacher's aid*" OR "teacher assistant" OR "educational assistant" OR 

"co*teach*" OR "co*taught" OR "cooperative taught" OR "collaborat* teach*" OR "team teach*" 

OR "second teacher" OR " team taught*" OR "team-based teach*" OR "classroom teacher collab-

orat*" OR "cooperative teach*" OR "pull-in instruction" OR "parallel teaching" OR "joint* in-

struction" OR "team instruction" OR "collaborative instruct*" OR "pull-in teaching" OR "co*in-

struction" OR "two teacher organi*ation" OR "paraprofessional teaching assistants" OR "extra 

teacher" OR "spare teacher" OR "station teaching" OR "joint* teach*" OR "transdisciplinary team 

approach" OR "alternative teaching" OR "alternative teaching" OR "consultation teaching" OR 

"consultation instruction" OR "co-planned teaching" OR "co-planned instruction*" OR "interdis-

ciplinary team teach*" OR "team teaching instruction" OR "clustering of teachers" OR "co-taught 

class*" OR "collaborat* teaching" OR "cooperative teaching school*" OR "cooperative teaching 

class*" OR "complementary instruct*" OR "team taught class*" OR "team-taught*" OR "two-

teacher approach" OR "two-teacher strategy" OR "collaborative team teaching" OR "team-teach-

ing school*" OR "team-teaching class*") ) AND DE ( ("RCT" OR "randomized control*" OR 

"randomised control*" OR "randomised experiments" OR "randomized experiments" OR "exper-

iment" OR "quasi-experimental" OR "fixed effect*" OR "random effect*" OR "large-scale assess-

ment" OR "meta-analysis" OR "systematic review" OR "synthesis" OR "cohort stud*" OR "pre-

test" OR "post-test" OR "case-control" OR "case series" OR "efficacy" OR "treatment" OR "inter-

vention" OR "effect*" OR "outcome*" OR "correlat*" OR "academic achievement" OR "achieve-

ment" OR "high school drop-out" OR "upper secondary school drop-out" OR "marks for the year's 

work" OR "year-end grades" OR "end of year marks" OR "leaving examination" OR "final exam*" 

OR "achievement test" OR "social outcome*" OR "attitude*" OR "mental health" OR "grade point 

average" OR "average mark*" OR "transcript" OR "effect size*" OR "grad*" OR "mark*" OR 

"predict*" OR "association" OR "case stud*" OR "observation*" OR "cluster random*" OR "sur-

vey" OR "matching" OR "matched" OR "impact*" OR "performance" OR "consequence*" OR 

"test*" OR "grade transcript" OR "transcript of record" OR "absence" OR "influenc*")) ) NOT DE 

( ("higher educ*" OR "kindergarten" OR "college" OR "undergraduate" OR "post*secondary" OR 

"pre*school" OR "vocational education") ) 

➔ Restricted by year of publication 
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18. Study records:  

 

18.1. Data management: Covidence is the main management tool we use for literature 

retrieval, literature management (such as duplicate assessment, abstract screening, 

and full-text screening). We use excel for the data extraction and the Risk of Bias 

(RoB) assessment. Will we document all effect size calculations via Rmarkdown 

so that readers of this review can assess and follow all parts of the computation. 

Find the all effect size calculations at https://osf.io/awb5s/.    

 

18.2. Selection process:   

Stage characteristic:   

1) Defining the problem: done by the authors exclusively.  

 

2) Literature search: To control the process of the search, Weiss has conducted  

the literature search. However, we have been supervised by our institutional 

affiliated librarian Lars Jakob Jensen from Aarhus University.   

 

3) Screening, Coding, and judging of eligibility of the literature: has been done by 

the author independently of each other. See section 17.3 below.  

 

4) Analyses and interpretations of the literature: will solely be conducted by all 

the authors in collaboration.  

  

18.3. Data collection procedures: (added from the PRISMA-P checklist):  

As far as possible, we followed advice from Cooper et al. (2009) and Higgins & 

Thomas (2019) regarding data collecting. Due to resource constraints, however, 

fully independent double coding will only be carried out for the abstract and full-

text screening. We have piloted tested all of our coding tools.  
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Variables/ Data items 

 

19. Measured variables: 

See Tables 1 and 2 

 

19.1. Intervention/independent variable:   

See Table 2 for an overview.   

 

19.2. Control variables/participant/sample population:   

See Table 2 for an overview. 

 

19.3. Study-test variables:  

See Tables 1 and 2 for an overview. 

 

Analysis Plan 

 

This section aims to describe the statistical analytical strategy of the study.  

  

20. Effect size calculation strategies (added ourselves)  

 

20.1. Obtaining effect size data from primary studies:  

If studies report multiple estimates eligible for effect size calculation, we always 

obtain the estimates from the model controlling most covariates. Furthermore, if a 

study reports estimates from all or some sub-tests and the aggregate measures of a 

given test battery from the same subject, we will only make use of the aggregated 

estimates, since we have no assumptions about how the effects of collaborative 

models of instruction might vary as a function of the specific content areas, and 

which goes beyond the major aim of this review.   

 

Even if fully randomized, we will always prioritize pre-posttest/covariates adjusted 

measures above posttest measures only. If a study both reports pre-posttest 
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measures and mean gain scores, we will calculate effect sizes from the raw pre-

posttest measure, and use the mean gain scores to investigate if any divergence 

appears among the two types of effect sizes.  In a similar vein, we commit our-

selves to retrieving all information relevant for different effect size calculation ap-

proaches so that we via a sensitivity analysis can test the impact of the given method 

of effect size calculation on our estimation.  

    We will strive to extract all relevant information that studies provide regard-

ing the correlations between repeated measures (e.g. pre-posttest correlation), be-

tween-outcome correlation, and/or the covariance of multiple outcomes, respec-

tively. This information is partly key to our difference-in-differences effect size 

calculation and partly key to the construction of our covariance-variance matrices 

behind our multivariates CHE models (Pustejovsky & Tipton, 2021). See section 

20 for elaboration. Furthermore, we use the pre-posttest correlations to impute into 

similar studies from which we cannot obtain the pre-posttest correlation but in 

which pre-post tests are reported.   

   If studies provide subgroup analyses of the type of student (general vs. spe-

cial needs students) we will retrieve this data.  

 

20.2. How to calculated effect size  

We apply several computational methods for the effect size calculation since gen-

eral textbook examples of effect size calculation of standardized mean difference 

can be severely biased when applied on various common control group designs and 

reported estimates encountered in education and the social sciences, especially pre-

posttest designs and covariate-adjusted measure. We draw on Borenstein (2009), 

Higgins & Thomas (2019), Pustejovsky (2016), Hedges (2007), the WWC Proce-

dure Handbook (2020, 2021), and Wilson (2016) for our effect size computations. 

We will use the pooled post-test standard deviation for all effect sizes. If only the 

pretest standard deviation is available, we will use that quantity for the effect size 

calculation. If we encounter that a large number of effect sizes only can be obtained 
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via alternative standard deviations or effect sizes such as Glass’ delta, we will con-

trol for this factor in our models. We don’t expect this to be the case. All effect size 

calculations will be available on the associated OSF webpage. 

If a study yields a pre-posttest measure but does not provide enough infor-

mation from which we can calculate the pre-posttest correlation, we will impute the 

pre-posttest correlation as suggested by WWC (See 2020 Appendix E). 

When pre-posttest correlations can be calculated from the study, we pool the cor-

relations by transforming the correlations to the Fisher’s z scale and taking the 

weighted mean of these estimates. Afterward, we convert it back to a mean corre-

lation measure again (Borenstein, Hedges, Higgins, & Rothstein, 2009, pp. 99–

100).  

We will calculate all effect sizes which is possible given the data from the 

study to examine how effect sizes vary across different methods of effect size com-

putation. As already mentioned, we will employ alternative computations to per-

form a sensitivity analysis concerning the impact of the computational methods on 

our results. However, if studies provide more than one alternative effect size meas-

ure, we will extract the most divergent one, only. The alternative effect size/out-

come vector (alternative dependent variable) will consist of the alternative effect 

size if only one alternative exists or the most extreme effect size measure if more 

than one alternative appears. For studies in which we can only calculate effect sizes 

via one computational method, the effect size(s) will be copied from the “correct” 

effect size/outcome vector to the alternative effect size/outcome vector.  

Effect size adjustment 

Effect sizes will be based on Hedges’ g, which is a part of the d-family but in which 

Cohen’s d is corrected for its tendency to overestimate the effect size in small sam-

ple sizes (Borenstein et al., 2009, p. 27). We consider this to be an important cor-

rection since we expect a great number of smaller studies to be included in the final 

dataset.  
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Cluster design adjustment  

All studies that do not account for clustering on the class level will be cluster design 

corrected on the missing level (Hedges, 2007). For the cluster design adjustment, 

we expect that we most often have to impute a value for the intraclass correlation 

(ICC) (if not reported by the study authors). We retrieve the imputed ICC from the 

unconditional models from Tables 2 and 3 in Hedges & Hedberg (2007) suggested 

by Hedges (2007). Notice that we use ICCs from mathematic achievement when 

we cluster-correct science effect sizes, and ICCs from reading achievement when 

we cluster-correct general language arts effect sizes, respectively.  

   We follow the WWC (2021) and Cochrane (2019) guidelines for estimating 

cluster design adjusted effect sizes. We cluster design correct studies although stu-

dents have been individually randomized to the treatment or control group because 

collaborative models of instruction are delivered at the class level, which likely will 

produce dependency among students with clusters (Higgins et al., 2019, p. 576). 

Find all formulas in WWC’s Supplement material to appendix E14. 

    

21. Statistical models (required) 

 

21.1. Weighted mean effect size model (intercept-only meta-regression model)  

In the final analysis, we will construct step-wise models meaning that we first fit 

random-effects models for the mean effect size model via the correlated-hierar-

chical effects (CHE) model which is simply a meta-regression intercept-only 

model. Second, we anticipate to fit sub-group models (meta-regression models with 

one focal covariate and possibly with some focal control factor) by either using the 

multivariate SCE model (Subgroup Correlated Effects) or the CMVE model (Cor-

related Multivariate Effects) depending on whether the covariate contains a sub-

stantial amount of within-study variance which is necessary for the latter model to 

be applicable. Lastly, we fit a meta-regression model with all focal covariates em-

ploying the CHE model. As all the above models entails, we use RVE to guard 

against model misspecifications (Pustejovsky & Tipton, 2020). 

 
14

 https://ies.ed.gov/ncee/wwc/Docs/referenceresources/WWC-41-Supplement-508_09212020.pdf  
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It might happen that we will build models that contain more random ef-

fect(s) and corresponding variance component(s) than just the true between-study 

and true within-study effects and variances. 

The main advantage of using the combination of multivariate/multilevel 

modeling and RVE is that we simultaneously can estimate the true heterogeneity of 

effect size within-study and between-study via restricted maximum likelihood 

(REML) and guard against misspecifications of the model. Further, we can use 

fully-inverse weights under the working model (i.e. using all true variance of the 

working model to create the weights).15 These are less biased and most efficient, 

(i.e. most precise) compared to the correlated effects model (the original RVE ap-

proach we intended to use) that only applies “approximately efficient” weights 

which are not fully inverse-variance weights with respect to their working model 

(Pustejovsky & Tipton, 2020) and which ignores the true within-study variance. 

Being able to estimate true variances components provide helpful diagnostic infor-

mation on which level more moderators are needed for understanding the true var-

iation in the collaborative models of instruction literature. Notice that since the 

REMLvariance component estimates are quite sensitive to the choice of between-

outcome correlation (ρ) for studies where this information is unknown, we might 

refrain from commenting on the relative magnitude of the variance components 

(Pustejovsky & Tipton, 2020, p. 30). However, we will use profile likelihood plots 

of the variance estimations to examine whether it is reliable to assume that the var-

iance components are identifiable. Moreover, we will use the variances components 

to estimate ICC correlations across levels to understand how strongly effect sizes 

are correlated within clusters. Hereto, we will use the variance components to esti-

mate “the total amount of heterogeneity in true effects” (Viechtbauer, 2020)16 in 

the model.   

We assume a common mean between outcomes within-study correlation 

which we estimate “by calculating the Pearson correlation between the pairs of 

15 To gain furhter insight of the weighting scheme behind these models, see https://www.jepusto.com/weighting-in-

multivariate-meta-analysis/ and http://www.metafor-project.org/doku.php/tips:weights_in_rma.mv_models 
16 See https://www.metafor-project.org/doku.php/analyses:konstantopoulos2011 
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available treatment effect estimates in those studies that provide data on both out-

comes” (Kirkham, Riley, & Williamson, 2012, p. 2182), i.e. in our cases math/sci-

ence and reading/language outcomes. This means that we will assume a “constant 

sample correlation” within studies. We will conduct sensitivity analyses by varying 

the between outcome within-study correlation to investigate how this assumption 

impacts the final results. For all analyses, we apply the metafor package in R 

(Viechtbauer, 2010) to estimate the multivariate/multi-level models, and to guard 

against misspecifications and to impute the covariance-variance matrices we use 

the clubSandwich package in R (Pustejovsky, 2020).   

   Important inference statistics for our interpretation will be the p-values and 

confidence intervals for the mean effect size, Q-statistics, 𝜎1 
2, … , 𝜎𝑛 

2 , and I2.17 The 

p-value and confidence intervals of the mean effect size are partly used to examine 

whether the mean effect size is different from null, partly to assess the magnitude 

of the average mean effect size, and partly to explore the precision of the estimated 

average mean effect size (the latter two points are overlapping). We apply the 

small-sample adjusted t-test with Satterthwaite approximated degrees of freedom 

(Tipton, 2015).We use Q (and the p-value of Q), 𝜎1 
2, … , 𝜎𝑛 

2 ,  and I2 to explore 

whether it is reasonable to assume that moderator mechanisms exist and to assess 

what percentage of the variance that can be attributed to true variation of effect 

sizes. As the prior literature in the field of co-teaching suggests (Khoury, 2014), we 

expect to find a significant amount of heterogeneity when assessing the between-

study variance of the mean effect size mainly due to our broad inclusion criteria of 

eligible study designs. Since prediction intervals have not yet been developed for 

meta-analysis with multiple outcomes, i.e. in our case the CHE-family models, we 

cannot follow the advice from Borenstein (2019) as initially intended regarding that 

the prediction interval should be the main index for assessing the specific amount 

and range of heterogeneity. If any new techniques surface, we intend to apply and 

present these.     

 
17 We will compute I2 for our multi-level models like https://www.metafor-project.org/doku.php/tips:i2_multi-

level_multivariate?s[]=i2  
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For model checking of all our models, we at conducting leave-one-out sen-

sitivity analysis, i.e. that we leave out one full study at a time. Furthermore, we will 

check if the model substantially captures the true variation in the dataset compared 

to models with fewer levels (Harrer, Cuijpers, Furukawa, & Ebert, 2019).  

Subgroup analysis (meta-regression models from which we interpret one covariate 

only)  

For some individual factors of critical importance, we will estimate classical-like 

sub-group analyses individually. All covariates used for the sub-group analyses will 

subsequently also be fitted in the full meta-regression model to avoid unexpected 

confounding among sub-group factors and to examine the impact on the results of 

the sub-group analysis. We will estimate the sub-group analyses either via SCE 

models or CMVE model depending on whether the covariate substantially varies 

within studies. Otherwise, it will not be possible to reliable fit CMVE models reli-

ably (Pustejovsky & Tipton, 2020). All covariates that vary substantially within 

studies will be centered to avoid contrary results within and across studies effects(E. 

E. Tanner-Smith & Tipton, 2014). We use these models because they both can be

interpreted as classical subgroup analyses and the estimates can be statistically 

compared. We will estimate the model via the metafor package and guard 

against misspecification of the model by use of the clubSandwich package. Sta-

tistically, this means that we use small-sample adjusted F-tests for our multi-con-

trast tests (Tipton & Pustejovsky, 2015), which yields approximate Hotelling T-

squared test with Zhang-type degrees of freedom (AHT(Z)). However, new re-

search suggests that the HTZ methods can be conservative and that cluster wild 

bootstrapping (CWB) better “controls for Type I error rate and has more power than 

the HTZ test” (Joshi, 2021). Pending the availability of software or code for imple-

menting CWB, we will use it for all inferential tests. If software/code is not yet 

available at the time of analysis, we will use the Approximate Hotelling T-squared 

test with Zhang-type degrees of freedom (AHT(Z)). If CWB software/code be-

comes available prior to submission of our study, we will update the results using 
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CWB for the primary analysis and report AHT(Z) as a sensitivity analysis. This 

also counts for the intercept-only model.  

 We will conduct subgroup analysis in which we examine the impact of sev-

eral focal moderators that we deem to be of special interest to the fields of co- and 

team-teaching such as subject taught, intervention mode, type of test/content, pub-

lication type, type of control group. We will also conduct a design-specific sub-

group analysis regarding the use of randomization (see Dietrichson et al. (2017) 

and Cooper et al. (Cooper, Hedges, & Valentine, 2019) for a similar approach). 

Since we expect to conduct several subgroup analyses, we run the risk of increasing 

the probability of committing Type I error rate merely because of the number of 

analyses. This fact to referred to as the “family-wise error rate” or multiplicity. 

Therefore, we will correct for multiplicity by using the false discovery rate method, 

suggested by Polanin (2013). This means, that we will lower the acceptable p-value 

of all meta-regression models (fitted with one or more covariates).    

             We use mixed-effects models for our subgroup analyses in which the studies 

within the specific subgroup are treated as random, but where the subgroups are 

treated as fixed (Borenstein, 2019). Generally, we will use the same statistical in-

ference components as for the univariate analysis of the weighted mean effect size. 

However, we apply the pooled τ2 estimate based on calculations of distinct τ2 esti-

mations from within each subgroup to examine if the sub-group indexation aims to 

explain a substantial part/the reduction of the between-study variance (Borenstein, 

2019, p. 199). See Table 1 for our hypotheses regarding the direction of the results 

of the subgroup analyses.   

  The above analysis strategy is based on the ideal case, in which we can 

obtain all relevant or at least a substantial amount of information for many studies. 

Therefore, the exact number of covariates used for all of our meta-regression mod-

els might vary in the final study.  

 

Meta-regression (subtantial interpretation of more than one covariate)  

We expect to fit the full meta-regression model by using the CHE model. In this 

model, we examine the relationship between several factors from different levels 
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i.e. study design characteristics/level, outcome characteristics, participant charac-

teristics, intervention characteristics, general study characteristics, and effect size 

calculation feasures based on theory and prior empirical workings in the fields of 

collaborative models of instruction and meta-analysis, respectively. (see Table 1, 

p. 7, for elaboration) Student achievement (i.e. reading/language arts, math, and 

science achievement) is the main dependent variable of the study/model. Table 1 

represents the ideal meta-regression model but from a realistic perspective, we 

don’t expect that the literature of collaborative models of instruction is rich enough 

on information to configure such a comprehensive model. We correct our model 

for multiplicity.     

Will present the covariance-variance matrix of the meta-regression model 

to examine if multicollinearity is present in the model.   

 

Risk of bias (RoB)18  

Since we allow for non-randomized (QES) and observational studies to be included 

in the meta-analysis, we both apply the risk-of-bias (RoB 2) tool for all randomized 

controlled trials, the RoB 2 CRCT tool for all cluster RCTs, and the ROBINS-I 

tool19 (Risk Of Bias In Non-randomized Studies of Interventions) for all non-ran-

domized or observational intervention studies. Since we allow various kinds of pub-

lication to be included in the review, we find it critical to conduct RoB assessments 

since “trials which are difficult to locate are often of lower quality raises the wor-

rying possibility that rather than preventing bias through extensive literature 

searches, bias could be introduced by including trials of low methodological qual-

ity” (Egger, Juni, Bartlett, Holenstein, & Sterne, 2003, p. iv). We exclude QES and 

observational studies if they retrieve a critical risk of bias judgement, and due to 

time resources will stop the assessment just after the first critical risk of bias judg-

ment is reached. This means that a study might have multiple errors but this is out-

side our concern for this review. 

 
18 This part is in many parts heavily inspired by Filges et al. (2015) 
19

 See https://www.riskofbias.info/welcome/home.  

250

https://www.riskofbias.info/welcome/home


 
 

 

Chapter II: Meta-Analysis of the Effects of Collaborative Models of Instruction 
 

 
 

  When we assess the risk-of-bias for non-randomized studies, we will direct 

a careful focus towards confounding factors of which we deem to be of special 

importance for the co- and team-teaching literature. These include across-arms bal-

ance or control of age, grade level, performance at baseline, gender, socioeconomic 

background, number of students with special needs, and demography of school (i.e 

urban/suburban vs. rural). These factors are considered to be of critical importance 

for several distinct reasons. We anticipate that the cognitive function of students is 

heavily related to the age of the students, and therefore, we deem it to all-important 

that this factor is equally balanced or controlled out in non-randomized study if the 

given results are to be trusted. We will exclude studies instantly if they apply two 

different year/age groups for the treatment and control group. In a similar vein, and 

based on  Lipsey et al. (2012), it is evident that the grade level is a significant pre-

dictor of student achievement. Consequently, this factor must be balanced between 

the treatment and control group in non-randomized studies if they are to be inter-

preted as trustworthy. Deduced from the same literature, it appears that males over-

all and on average have a lower academic performance relative to females, espe-

cially in language arts subjects (Bloom et al., 2008). For this reason, we consider 

this factor to be an important balance/control factor in non-randomized studies. In-

spired by Filges et al. (2015), we assume that the teacher-ratio may be negatively 

correlated with students' socioeconomic background similar to what is valid in the 

field of class size reduction. In general, we anticipate students from more advan-

taged socio-economic backgrounds to have a greater gain of two-teacher instruction 

partly due to for example an increased amount of upward perception bias (Jæger, 

2011). Socioeconomic factors which we deem to be important to be balanced in 

non-randomized studies are parents’ level of education, family income (outside the 

Scandinavian countries), minority background, etc. Moreover, if some of these fac-

tors aren’t balanced the given study risks contain a serious bias because students 

with socioeconomic disadvantaged backgrounds seem to perform unsatisfactorily 

in achievement tests (Filges et al., 2015, p. 19). However, we consider it to be ac-

ceptable if just one of the above-mentioned factors is balanced/controlled out.      
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The co-teaching literature suggests that the inclusion of too many (approx-

imately more than five disabled students) can have a negative impact on the effect 

of co-teaching (Cook et al., 2016). Therefore, it seems to be relevant to take this 

into account when assessing important balancing/controlling factors in non-ran-

domized studies. 

The last balance/control factor, we deem to be of substantial importance is 

the demography of the school since much indicates that urban schools are better 

equipped in terms of material resources such as better libraries, etc. relative to rural 

schools and that this has a significant impact on student learning. Thus it might 

seem to be important that non-randomized studies take this factor into account to 

be trustworthy. 

We consider pre-posttest design studies to be of moderate risk of bias due 

to confounding even if they don’t focus on the above balance factors.  

We will upload all RoB schemes to OSF. 

Sensitivity Analyses 

We will perform several sensitivity analyses. First, we will check the impact of the 

alternative-calculated effect size estimates on the final results. Second, we will test 

if results change if had chosen not to include high/serious risk of bias studies. Third, 

we will conduct sensitivity analyses for publication biases from Mathur & 

VanderWeele (2020) and Stanley, Doucouliagos, & Ioannidis (2017). If only a few 

effect size estimates from our meta-analysis database are well powered, we will not 

apply the weighted average of the adequately powered (WAAP) method. We will 

also conduct a leave-one-out analysis. Fourth, we will test if results are robust to 

the imputed pre-posttest correlation used for effect size calculation for pre-posttest 

designed studies from which it was not possible to retrieve any pre-posttest corre-

lation to calculate the variance estimation. Finally, we will test how and if results 

change had we either imputed ICC values for the cluster bias adjustment differently 

or had ignored cluster issues.    

If software or codes become available from which we can apply cluster wild 
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bootstrapping (CWB), we will compare the results between CWB and HTZ meth-

ods. More sensitivity analyses might be added in the final analysis if we uncover a 

pressing necessity.   

 

22. Transformations (optional) 

We will use variance-stabilizing for assessing selective reporting/publication 

bias/small study bias (Hedges & Olkin, 1985; Pustejovsky & Rodgers, 2019, p. 60; 

Rothstein et al., 2005). This is necessary for removing the artificial correlation be-

tween the variance and the effect size component which naturally occur due to the 

fact that the estimated effect size obtained from the given primary study is included 

in the formula underpinning the calculation of the variance of the standardized 

mean difference (Pustejovsky & Rodgers, 2019; Rodgers & Pustejovsky, 2019). 

The variance-stabilized estimates will be used for Egger’s Sandwich test based on 

CHE models and not CE models as suggested in Pustejovsky & Rodgers (2019), 

Funnel Plot Asymmetry test with multiple outcomes, Trim and Fill test with multi-

ple outcomes, Cumulative Analysis. We do also conduct three-parameter selection 

models (3PSM) either via the weightr package (Coburn & Vevea, 2019) or the 

metafor package in R (Viechtbauer, 2010). For this model, we apply a modified 

version of the precision 𝑊𝑖 = Var(Δ̂)/𝜎𝑗
2. This has shown to be the best way to 

apply the 3PSM model since this approach adequately controls Type I error rates 

and have higher convergence rates (meaning that it for most calculations correctly 

include the true parameter in the confidence interval) compared to variance-stabi-

lized estimation. However, the variance-stabilizing transformation has a power ad-

vantage over all the other tests, and that is why we use variance-stabilized for all 

other small study tests (Pustejovsky & Rodgers, 2019). It is not yet possible to use 

the RVE framework for 3PSM models. Consequently, we will both apply the mean 

effect size of each study and repeated random sampling of one effect size from each 

multi-effects study, when we conduct 3PSM models as suggested by Rodgers & 

Pustejovsky (2019, p. 45). Moreover, we will fit the 3PSM model if find more than 

40 studies.   
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23. Inference criteria (optional)

23.1. Is mentioned in section 19 

24. Data exclusion (optional)

24.1. We exclude QES and observational studies that are judged to contain a critical risk 

of bias for at least one ROBINS-I domain. Furthermore, we exclude studies and 

effect sizes if we are entirely certain that the results are error-prone.   

25. Missing data (optional)

25.1. We apply multiple imputation (MI) to handle missing data. Before our conduct of 

MI, we will conduct explorative missing data analyses to examine the potential 

missing data patterns (Schauer, Diaz, Lee, & Pigott, 2020). This will help us to 

construct the most accurate imputation model. To reduce biased MI results, we will 

handle all substantial missing data of independent variables via multi-level multiple 

imputation (Buuren & Groothuis-Oudshoorn, 2010; Van Buuren, 2018) so that we 

also take into account the nesting structure of our data in our handling of missing 

data. We expect to generate at least 20 datasets premised upon multiple imputa-

tions, and we will use Bernard & Rubin’s (1999) small sample correction to pool 

results which are currently most adequate to use for pooling statistics premised 

upon cluster-robust variance estimators (Pustejovsky, 2017). If good predictors for 

variables with many missings are available, we will allow covariates with 60 per-

cent missings to be included in the regression model. 

When it comes to missing data for the dependent variable i.e. for the effect sizes, 

we conducted tests for selective reporting via several methods which are recom-

mended in the meta-analytical literature (Rodgers & Pustejovsky, 2019; Rothstein 

et al., 2005). These tests include Eggers Sandwich based on CHE-models (Rodgers 
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& Pustejovsky, 2019), Funnel Plot Asymmetry with multiple outcomes, and Trim 

and Fill test with multiple outcomes20. Finally, we will apply the 3PSM.  

 

26. Exploratory analysis (optional) 

 

26.1. See section 22.1 

Other 

27. Other (Optional) 

 

27.1. This study heavily draws on the workings of (Cooper et al., 2009; Dietrichson et 

al., 2017; Fisher & Tipton, 2015; Hedges & Pigott, 2001, 2004; Hedges, Tipton, & 

Johnson, 2010; T. Pigott, 2012; T. D. Pigott & Polanin, 2019; J. R. . Polanin, 

Espelage, & Grotpeter, 2018; Pustejovsky & Rodgers, 2019; Pustejovsky & Tipton, 

2020; Rodgers & Pustejovsky, 2019; E. Tanner-Smith, Tipton, & Polanin, 2016; 

Tipton, 2015; Valentine et al., 2010; Viechtbauer, 2010).  

 

All relevant documents linked to this study including codes behind all statistical 

procedures will be uploaded to https://osf.io/fby7w/.    

  

 
20 In this regard, we are heavily inspired by the working of Rodgers & Pustejovsky.  
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Chapter III: Power Approximations for Meta-Analysis of Dependent Effect Sizes 

Abstract 

Meta-analytic models for dependent effect sizes have grown increasingly sophisticated 

over the last few decades, which has created challenges for a priori power calculations. 

We introduce power approximations for tests of average effect sizes based upon the most 

common models for handling dependent effect sizes. In a Monte Carlo simulation, we 

show that the new power formulas can accurately approximate the true power of common 

meta-analytic models for dependent effect sizes. Lastly, we investigate the Type I error 

rate and power for several common models, finding that tests using robust variance 

estimation provide better Type I error calibration than tests with model-based variance 

estimation. We consider implications for practice with respect to selecting a working 

model and an inferential approach.   

KEYWORDS: power, meta-analysis, dependent effect sizes, CHE model, robust variance 

estimation 
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Introduction 

Meta-analyses in the social and behavioral sciences typically include studies that report on multiple 

outcomes measured on the same sample. Recent research in meta-analysis (Pustejovsky & Tipton, 

2021; van den Noortgate et al., 2013) provides models that better reflect the complex error 

structure of such effect size data, recognizing the dependence among effect sizes within studies 

and accounting for the multilevel nature of the data. As these models come into wider use, it is 

important to understand their performance given the complex structure of many meta-analysis data 

sets. One critical aspect of performance is the statistical power of the model to detect a non-null 

average effect size.  

Power analysis in meta-analysis can provide insight about the potential utility of a planned 

systematic review. Conducting an a priori power analysis helps researchers determine whether the 

existing evidence base is large enough to detect an effect size of substantive importance, so that 

both researchers and potential funders can judge if the literature is mature enough for a systematic 

review. An a priori power analysis can also guide decisions about potential meta-analytic models. 

Meta-analysts are employing more complex models that reflect the multilevel and correlated 

nature of effect size data, and these model have greater data requirements than traditional, 

independent effect size models. As illustrated later in this paper, statistical power to detect a non-

null average effect size may differ depending on both the nature of effect size data and the model 

used to approximate the distribution of effect sizes.  

Available methods for calculating a priori power of the statistical tests used in meta-

analysis are limited to models for independent effect sizes, that is, where each study contributes 

one independent effect size estimate to the meta-analysis (Hedges & Pigott, 2001, 2004; Jackson 

& Turner, 2017; Valentine et al., 2010). However, the assumption of independent effect sizes tends 

to hold only for narrowly-focused and smaller-scale meta-analyses (Ahn et al., 2012; Tipton et al., 

2019; Tipton & Pustejovsky, 2015). As researchers adopt meta-analysis models that reflect the 

multivariate and multilevel nature of effect size data, information is needed about the power of 

these newer models, given the distinct assumptions and data structures on which they are based. 

In this paper, we develop new power approximations and examine the power of the test of the 

mean effect size under different strategies for modeling dependent effect sizes nested within 
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studies. Below we review current models for dependent effect sizes nested within studies and then 

discuss the aims of this research.  

 

Models for Dependent Effect Sizes 

Research syntheses in the social and behavioral sciences often include multiple effect sizes from 

a single primary study, leading to dependent effect sizes. Dependency can occur for a variety of 

reasons, for example, by studies measuring multiple relevant outcomes (e.g. math and science 

scores, respectively) on the same sample of individuals, or by studies reporting effect sizes across 

multiple independent samples (e.g. results for primary and secondary school students, 

respectively). In the past, researchers often handled effect size dependency through ad hoc 

modifications of the data. For instance, researchers might calculate a synthetic effect size for each 

study, averaging across different outcomes and/or time points (Tipton et al., 2019), or chose a 

single effect size from each study for analysis. These strategies then allowed the use of univariate 

meta-analysis methods.  

Multivariate effect size models that reflect effect size dependencies were first introduced 

by Hedges & Olkin (1985) and further developed by Raudenbush, Becker, and Kalaian (1988). 

These methods did not see widespread use in meta-analysis because they required the correlation 

matrix among effect sizes, information not usually available from primary studies. A key advance 

in the modeling of effect size dependencies occurred when Hedges et al. (2010) introduced the use 

of robust variance estimation (RVE), a technique that allows for the estimation of meta-analysis 

models even when the exact correlation matrix among effect sizes is unknown. More recent 

research (Tipton, 2015; Tipton & Pustejovsky, 2015) extended this approach, providing small-

sample corrections for standard errors and hypothesis tests.  

A key difference between RVE and previous approaches is that inferences under earlier 

multivariate models were model-based, meaning that they required the distributional assumptions 

of the model to be correctly specified for hypothesis tests and confidence intervals to work 

properly. In contrast, RVE makes use of a working model for dependence among the effect sizes, 

which is an approximation to the dependence structure that need not be entirely correct. Initially, 

Hedges and colleagues (2010) introduced two working models, called the correlated effects (CE) 

model and the hierarchical effects (HE) model, to approximate different aspects of dependence. 
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They showed that even when the working model is mis-specified, it can still provide reasonably 

precise estimates of the mean effect size or meta-regression coefficients. Furthermore, and in 

contrast to model-based inference methods, RVE methods produce properly calibrated hypothesis 

tests and confidence intervals, even if the working model is mis-specified. 

An alternative strategy, suggested by Van den Noortgate and colleagues (2013), is to use a 

multi-level meta-analysis (MLMA) model along with conventional, model-based inference 

methods. Van den Noortgate and colleagues (2013, 2014) demonstrated that model-based 

inferences from the MLMA work well in the presence of dependent effect sizes, even though 

aspects of the model may be mis-specified. They argued that the MLMA is therefore robust and, 

similar to the RVE approach, can be applied without knowledge of the dependence structure of the 

data. More recently, Moeyaert and colleagues (2017) conducted head-to-head comparisons of RVE 

(with a correlated effects working model) and MLMA. Their findings indicate that both methods 

perform similarly when the data include a large number of studies, but that RVE provided more 

accurate uncertainty assessments when the number of studies was limited. Further, Fernandez-

Castilla et al. (2020) suggested that MLMA could be treated as a working model and combined 

with RVE inferential methods to provide additional robustness to model-mis-specification. 

Another new strategy–coined by Pustejovsky & Tipton (2021) as the correlated-

hierarchical effects (CHE) working model–recognizes both the correlated nature of effect size 

estimates and the multilevel structure of effect sizes nested within studies. Compared to the 

previously proposed CE and HE working models, the CHE working model provides researchers 

with the option of more closely approximating the actual structure of meta-analytic data while also 

guarding against mis-specification using robust variance estimation techniques.  

 

Aims 

In this article, we investigate the power of current models for handling dependent effect sizes in 

meta-analysis. We pursue three aims: 1) to develop approximations for the power of models that 

reflect the multivariate and multilevel nature of effect size data, 2) to validate these approximations 

using simulations, and 3) to provide guidance to researchers applying these models in terms of 

Type I error and power. To illustrate the approximations and to provide context for the simulation 

conditions, we use a recent meta-analysis conducted by Dietrichson, Bøg, Filges, and Jørgensen 
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(2017, henceforth DBFJ17) that investigates interventions for increasing the academic 

achievement (i.e. mathematics and reading) of students with low socioeconomic status (SES).   

We develop new approximations for the power of several different hypothesis tests in meta-

analysis of dependent effect sizes. For developing prospective power calculations, it is necessary 

to posit a true data-generating process. We take as a starting point the CHE model because it nests 

many other simpler specifications of interest. Under the CHE, we provide power approximations 

for 1) a model-based test based on a correctly specified working model  (CHE-model); 2) a robust 

test based on a correctly specified model (CHE-RVE); 3) a robust test based on a simpler correlated 

effects (CE) working model, which is not correctly specified; 4) a model-based test based on an 

incorrectly specified MLMA model (MLMA-model); and 5) a robust test that uses the MLMA as 

a working model (MLMA-RVE). We then provide guidance for applying these approximations to 

a meta-analysis. Next, we test and validate the performance of the new power approximations via 

Monte Carlo simulation by comparing the true simulated and approximated power across various 

model conditions. Before describing the new power approximations, we review extant methods 

for statistical power in univariate meta-analysis.   

 

Power Approximation for Univariate Meta-Analysis 

Current methods for a priori power calculations are limited to models that include a single, 

independent effect size estimate from each study. Consider such a meta-analysis, based on data 

from 𝐽 studies, where the primary aim is to test the null hypothesis that the overall average effect 

size 𝜇 is equal to a specific value 𝑑. Let 𝜎𝑗  denote the standard error of the effect size estimate 

from study 𝑗, for 𝑗 = 1,… , 𝐽. Under a univariate random-effects model (RE), the null hypothesis 

𝐻0: 𝜇 = 𝑑 would typically be tested using the Wald statistic   

 

 𝑡𝑈 =
𝜇̂ − 𝑑

√𝑉̂ 
  (1) 

 

where 𝜇̂ is the random effects estimate of the overall average effect size and 𝑉̂ is its estimated 

sampling variance (Hedges & Pigott, 2001). When the null hypothesis holds, the test statistic 𝑡𝑈 

approximately follows a central Student-t distribution with 𝐽 − 1 degrees of freedom; when the 

null does not hold, its distribution is approximately a non-central Student-t distribution with non-
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centrality parameter 𝜆 = (𝜇 − 𝑑)/√𝑉 and 𝐽 − 1 degrees of freedom, where 𝑉 is the expected 

sampling variance (Hartung & Knapp, 2001). Power is therefore given by 

 

 𝐹𝑡(−𝑐𝛼/2,𝐽−1|𝐽 − 1, 𝜆) + 1 − 𝐹𝑡(𝑐𝛼/2,𝐽−1|𝐽 − 1, 𝜆) (2) 

 

where 𝐹𝑡(𝑥|𝜐, 𝜆) is the cumulative distribution function of a non-central Student-t distribution, and 

𝑐𝛼,𝜁 is the upper 𝛼-level critical value for the central Student-t distribution with 𝜁 degrees of 

freedom, so 𝐹𝑡(𝑐𝛼/2,𝜁|𝜁, 0) = 1 − 𝛼/2. 

The usual way of approximating a priori power under a univariate model is first to 

determine the minimum effect size of practical significance, and second to estimate the variance 

of the weighted overall mean effect size by estimating a) the average sampling variance of an effect 

size estimate in a “typical” study; b) the true between-study variance, 𝜏2; and c) the expected 

number of studies in the meta-analysis, 𝐽. The variance of the weighted mean effect size is 

approximately 𝑉 = 1/𝑊𝑅𝐸, where 𝑊𝑅𝐸 = ∑ 𝑤𝑗
∗𝐽

𝑗=1  and 𝑤𝑗
∗ = (𝜏2 + 𝜎𝑗

2)
−1

 are the study-specific 

inverse variance weights under the random effects model. If a complete balance of sample sizes is 

assumed, so that 𝜎1 = 𝜎2 = ⋯ = 𝜎𝐽 = 𝜎, then 𝑉 simplifies to (𝜏2 + 𝜎2)/𝐽.  

In meta-analyses of standardized mean difference effect sizes comparing two groups, the 

effect size estimate’s sampling variance is closely related to the overall sample size (Valentine et 

al., 2010). Assuming the groups are of equal size,  

 

 𝜎2 ≈ (
4

𝑁
+

𝜇2

2(𝑁 − 2)
), (3) 

 

where 𝑁 is the assumed average effective sample size. Thus, if we know the average effective 

sample size of studies in a given area, we can approximate the average sampling variance. To 

arrive at a value for the between-study variance 𝜏2, Pigott (2012) suggested that 𝜏2 = (1/3)𝜎2  

could be considered a low degree of heterogeneity, 𝜏2 = 𝜎2 could be considered a moderate degree 

of heterogeneity, and 𝜏2 = 3𝜎2 could be considered a large degree of heterogeneity.  
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Suppose we aim to estimate the power of the test for 𝐻0: 𝜇 = 0, with the usual level of 𝛼 =

.05, in a meta-analysis of standardized mean difference effect sizes. With a low degree of 

heterogeneity, Pigott’s guidelines would suggest a sampling variance of approximately 𝑉 =

4𝜎2/(3𝐽). Suppose that we expect to identify at least 12 studies and that the average effective

sample size is 𝑁 = 100. Therefore, 𝜎2 ≈ 4/100 and the expected sampling variance is at most

𝑉 = 16/3600. Using this value in Equation (2), we find power of 0.278 for an average effect of 

𝜇 = 0.1, power of 0.780 for 𝜇 = 0.2, and power of 0.983 for 𝜇 = 0.3. 

Existing power approximations do not apply directly in meta-analyses involving dependent 

effect sizes. However, one could try applying them by calculating power assuming that there is 

just one effect size estimate per study—as would be the case if the meta-analyst calculated a single, 

synthetic effect size per study. Following this approach, we would anticipate power of 0.278 to 

detect an average effect of 𝜇 = 0.1 in a meta-analysis of 12 studies with an average sample size of 

𝑁 = 100, regardless of whether each study included a single or multiple effect size estimates. The 

performance of this approximation in terms of predicting the true power of models with synthetic 

effect sizes is not known. Furthermore, because this approximation under-determines important 

quantities needed for calculating power under more complex models, we now turn to the 

development of new power formulas for models of dependent effect sizes.   

Power Approximations for Meta-Analysis of Dependent Effect Sizes 

We now describe approximations for the power of tests for an overall average effect in a meta-

analysis of dependent effect sizes. We assume that the data-generating process conforms to the 

correlated-and-hierarchical effects (CHE) model as described by Pustejovsky and Tipton (2021). 

Under this data-generating process, we consider several different testing procedures, including 

both model-based tests and robust tests based on several distinct working models. Unlike the 

univariate approximations described in the previous section, we allow for sampling variances and 

other features to differ from study to study, so that we can examine the implications of assuming 

that study features are homogeneous. 

Consider a collection of 𝐽 studies to be included in a meta-analysis, where each study 

contributes 𝑘𝑗 effect size estimates, for 𝑗 = 1, . . , 𝐽. Let 𝑇𝑖𝑗 denote effect size estimate 𝑖 from study 

𝑗, with corresponding standard error 𝜎𝑖𝑗, for 𝑖 = 1,… , 𝑘𝑗 and 𝑗 = 1,… , 𝐽. As usual in meta-analysis, 
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we shall assume that each 𝑇𝑖𝑗 is an unbiased estimator of an effect size parameter 𝜃𝑖𝑗 and that 𝜎𝑖𝑗 

is fixed and known. These assumptions can be expressed by the model  

 

 𝑇𝑖𝑗 = 𝜃𝑖𝑗 + 𝑒𝑖𝑗, (4) 

   

where 𝑒𝑖𝑗 = 𝑇𝑖𝑗 − 𝜃𝑖𝑗  is the sampling error, with E(𝑒𝑖𝑗) = 0 and Var(𝑒𝑖𝑗) = 𝜎𝑖𝑗
2 . We assume that 

the effect size estimates from different studies are uncorrelated, so cor(𝑒ℎ𝑗, 𝑒𝑖𝑙) = 0 when 𝑗 ≠ 𝑙, 

but that effect size estimates from the same study may be correlated. For simplicity, we also assume 

that the sampling variances are constant within each study, so 𝜎1𝑗
2 = 𝜎2𝑗

2 = ⋯ = 𝜎𝑘𝑗𝑗
2 = 𝜎𝑗

2, and 

that the correlations between sampling errors within a given study are all equal to a known 

constant, cor(𝑒ℎ𝑗, 𝑒𝑖𝑗) = 𝜌. 

Following the CHE model, we assume that the effect size parameters represent a sample 

from an underlying population of effects that has a hierarchical structure, according to  

 𝜃𝑖𝑗 = 𝜇 + 𝑢𝑗 + 𝑣𝑖𝑗 , (5) 

where the study-level error term 𝑢𝑗  has mean zero and variance 𝜏2 and the effect size-level error 

term 𝑣𝑖𝑗 has mean zero and variance 𝜔2. The main parameters of the data-generating model are 

then the overall average effect size 𝜇; the between-study heterogeneity 𝜏2; the within-study 

heterogeneity 𝜔2; and the sampling correlation 𝜌. Under this model, we consider tests of the null 

hypothesis 𝐻0: 𝜇 = 𝑑 versus a two-sided alternative, with specified Type-I error level 𝛼.   

 

Estimation of CHE 

If one treats the model as correctly specified, then estimation of the overall average effect size 𝜇 

entails first estimating the variance components and then using the estimated variance components 

to take an inverse-variance weighted average of the effect size estimates. Let 𝜏̂2 and 𝜔̂2 denote 

full or restricted maximum likelihood estimators of the variance components, which are calculated 

given the true sampling correlation 𝜌. Given values of these estimators, the overall average effect 

size estimate is a weighted average of the study-specific average effect size estimates, with weights 

given by 
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𝑤𝑗 =
𝑘𝑗

𝑘𝑗𝜏̂2 + 𝑘𝑗𝜌𝜎𝑗
2 + 𝜔̂2 + (1 − 𝜌)𝜎𝑗

2. (6) 

The overall weighted average is then 

𝜇̂ =
1

𝑊
∑𝑤𝑗𝑇̅𝑗

𝐽

𝑗=1

, (7) 

where 𝑇̅𝑗 =
1

𝑘𝑗
∑ 𝑇𝑖𝑗
𝑘𝑗
𝑖=1

 and 𝑊 = ∑ 𝑤𝑗
𝐽
𝑗=1 . If the CHE model is correctly specified, then 

𝑉𝑎𝑟(𝜇̂) ≈ 𝑆 =
1

𝑊
. (8) 

The approximation here arises because, in practice, 𝑊 is calculated using estimated variance 

components rather than known parameter values.  

Model-Based Hypothesis Test 

One way to test the null hypothesis 𝐻0: 𝜇 = 𝑑 is via a conventional Wald test. The model-based 

Wald test statistic is 

𝑡𝑀 =
𝜇̂ − 𝑑

√1/W
. (9) 

Consider the scenario in which the CHE model is correctly specified and the number of 

independent studies is large. If the null hypothesis holds, then 𝑡𝑀 follows a standard normal

distribution. If the null hypothesis does not hold, then 𝑡𝑀 approximately follows a normal

distribution with mean 

𝜆 = √𝑊(𝜇 − 𝑑). (10) 
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and unit variance. However, such large-sample approximations do not necessarily provide an 

adequate guide for sample sizes encountered in practice because of the uncertainty in the variance 

component estimates used to calculate 𝑊. It is thus desirable to develop an approximation that 

works even with a smaller number of studies.  

In practice, researchers might use a Student-t distribution with 𝐽 − 1 degrees of freedom as 

a reference distribution in the model-based tests. This is a fairly rough approximation to the 

sampling distribution of the model-based test. Alternatives would be to use a Satterthwaite 

approximation (Giesbrecht & Burns, 1985) for the degrees of freedom or Kenward and Roger 

(2009) approximation for the sampling variance estimator and degrees of freedom. We consider 

the former because it is simpler and more tractable.  

We propose to approximate the power of the model-based Wald test by assuming that 𝑡𝑀 

follows a non-central Student-t distribution with non-centrality parameter 𝜆 and 𝜁 degrees of 

freedom, where the degrees of freedom are determined using Satterthwaite approximation. As 

previously, let 𝐹𝑡(𝑥|𝜁, 𝜆) be the cumulative distribution function of the Student-t and let 𝑐𝛼,𝜁 be 

the upper 𝛼-level critical value from a central Student-t distribution. The power of the model-based 

Wald test against a two-sided alternative can then be approximated by 

 

 𝐹𝑡(−𝑐𝛼/2,𝜁|𝜁, 𝜆) + 1 − 𝐹𝑡(𝑐𝛼/2,𝜁|𝜁, 𝜆). (11) 

 

Under the CHE model, the Satterthwaite degrees of freedom are given by  

 

 𝜁 =
𝑠𝑡 − 𝑢2

𝑠𝑦2 + 𝑡𝑥2 − 2𝑢𝑥𝑦
, (12) 

   

where  

 

𝑥 =
1

𝑊
∑𝑤𝑗

2

𝐽

𝑗=1

,       𝑦 =
1

𝑊
∑
𝑤𝑗
2

𝑘𝑗

𝐽

𝑗=1

,       𝑠 = 𝑥2 +𝑊𝑥 −
2

𝑊
∑𝑤𝑗

3

𝐽

𝑗=1

, 
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 𝑡 = 𝑦2 +∑
𝑤𝑗
2

𝑘𝑗
2

𝐽

𝑗=1

+∑
𝑘𝑗 − 1

(𝜔̂2 + (1 − 𝜌)𝜎𝑗
2)
2

𝐽

𝑗=1

−
2

𝑊
∑
𝑤𝑗
3

𝑘𝑗
2

𝐽

𝑗=1

,   and   𝑢 = 𝑥𝑦 +𝑊𝑦 −
2

𝑊
∑
𝑤𝑗
3

𝑘𝑗

𝐽

𝑗=1

. 

If all studies include the same number of effect sizes (𝑘1 = 𝑘2 = ⋯ = 𝑘𝐽 = 𝑘) and have equal 

standard errors (𝜎1 = 𝜎2 = ⋯ = 𝜎𝐽 = 𝜎), we describe the meta-analytic sample as “completely 

balanced.” With a completely balanced sample, the weights will be equal for any values of the 

variance components 𝜏2 and 𝜔2 and the degrees of freedom will simplify to 𝜁 = 𝐽 − 1. In a sample

that is not completely balanced, 𝜁 will be less than 𝐽 − 1.  

Note that the proposed approximation uses a Student-t critical value with the Satterthwaite 

degrees of freedom 𝜁. We acknowledge that the Satterthwaite approximation is not commonly 

applied in practice, nor is it available in commonly used software. In principle, one could use the 

power approximation with other degrees of freedom, such as by substituting the critical value 

−𝑐𝛼/2,𝐽−1. However, such a test would have distorted Type-I error rate to the extent that the

Satterthwaite degrees of freedom deviate from 𝐽 − 1. We explore the extent of such size distortions 

in the simulation study. 

In order to implement this power approximation prospectively, one will need to calculate 

weights for each of 𝐽 included studies. We propose to make such calculations using assumed values 

for the variance component estimates 𝜏̂2 and 𝜔̂2, as well as assumptions about the sampling

correlation 𝜌 and the distribution of primary study sample sizes and effect sizes per study. We 

demonstrate such prospective power calculations and discuss these assumptions further at the end 

of this section.  

Robust Hypothesis Test 

Even when using Satterthwaite degrees of freedom, the model-based test will have close-to-correct 

Type I error only when the assumptions of the CHE working model hold. In light of the lack of 

information about the sampling correlations between effect size estimates, meta-analysts may 

prefer to use tests based on robust variance estimation methods, which maintain close-to-correct 

size even if the CHE model is mis-specified. With the CHE working model, a robust estimator for 

the variance of 𝜇̂ is given by 
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𝑉𝑅 =
1

W2
∑
𝑤𝑗
2(𝑇̅𝑗 − 𝜇̂)

2

(1 −
𝑤𝑗
𝑊)

.

𝐽

𝑖=1

 (13) 

 

The denominator of the summand is equivalent to the CR2 small-sample correction described by 

Tipton (2015). When the working model is correctly specified, then 𝑉𝑅 is an exactly unbiased 

estimator of  𝑉𝑎𝑟(𝜇̂). However, even if the assumptions of the working model do not hold,  𝑉𝑅 

remains close to unbiased. A robust Wald test statistic based on 𝑉𝑅 is  

 

 𝑡𝑅 =
𝜇̂ − 𝑑

√𝑉𝑅
. (14) 

   

Again consider the scenario in which the CHE model is correctly specified and the number of 

independent studies is large. If the null hypothesis holds, then 𝑡𝑅 follows a standard normal 

distribution. If the null hypothesis does not hold, then 𝑡𝑅 approximately follows a normal 

distribution with mean 𝜆 (as given in Equation 10) and unit variance. Thus, with a sufficiently 

large number of studies, the robust test has power equivalent to that of the model-based test. 

However, large-sample approximations do not necessarily provide an adequate guide for sample 

sizes encountered in practice. 

Tipton (2015) proposed approximating the distribution of 𝑡𝑅 under the null hypothesis by 

a Student-t distribution with 𝜉 degrees of freedom, where 𝜉 is derived based on a Satterthwaite 

approximation under the assumption that the working model is correct. Here, we propose to use 

the same approximation when the null does not hold, so that 𝑡𝑅 approximately follows a non-

central Student-t distribution with 𝜉 degrees of freedom and non-centrality parameter 𝜆. The power 

of the robust Wald test against a two-sided alternative can then be approximated by 

 

 𝐹𝑡(−𝑐𝛼/2,𝜉|𝜉, 𝜆) + 1 − 𝐹𝑡(𝑐𝛼/2,𝜉|𝜉, 𝜆). (15) 

 

If the working model is correctly specified (and treating the variance components as known), then 

the degrees of freedom for the robust test are given by 
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𝜉 = [∑
𝑤𝑗
2

(𝑊 − 𝑤𝑗)
2

𝐽

𝑗=1

−
2

𝑊
∑

𝑤𝑗
3

(𝑊 − 𝑤𝑗)
2

𝐽

𝑗=1

+
1

𝑊2
(∑

𝑤𝑗
2

𝑊 −𝑤𝑗

𝐽

𝑗=1

)

2

]

−1

. (16) 

In a completely balanced sample, the degrees of freedom simplify to 𝜉 = 𝐽 − 1. When the sample 

is not completely balanced, the degrees of freedom will be less than 𝐽 − 1 to an extent that depends 

on the degree of imbalance. One implication is that, for a completely balanced meta-analytic 

sample, the robust test has power approximately equivalent to that of the model-based test. The 

tests might diverge in power, however, when the primary study features are imbalanced.   

RVE with CE Working Model 

The original implementation of RVE introduced working models that were simplifications of the 

CHE model, as well as using weights that were not exactly inverse-variance under those simplified 

working models. The default working model, called the correlated effects (CE) model, has only a 

single, between-study variance component, estimated using a method-of-moments formula. Let 𝜏̈2

denote this method-of-moments estimator. If the true data-generating process follows the CHE 

model, then this estimator has expectation 

E(𝜏̈2) = 𝜏2 + 𝜔2

(

1 − ∑
1
𝑘𝑗𝜎𝑗

4
𝐽
𝑗=1

1 − ∑
1
𝜎𝑗
4

𝐽
𝑗=1 )

. (17) 

For purposes of power calculations, we will approximate the estimator 𝜏̈2 by its expectation. The

weights used with the CE model are given by 

𝑤̈𝑗 =
1

(𝜏̈2 + 𝜎𝑗
2)
, (18) 

with overall average effect size estimator 𝜇̈ = ∑ 𝑤̈𝑗𝑇̅𝑗/𝑊̈
𝐽
𝑗=1 , where 𝑊̈ = ∑ 𝑤̈𝑗

𝐽
𝑗=1 . If the CE model 

is applied when the true data-generating process follows the CHE model, then the variance of the 

overall average effect size estimator will be 
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 Var(𝜇̈) = 𝑆̈ =
1

𝑊̈2
∑𝑤̈𝑗

2 (𝜏2 + 𝜌𝜎𝑗
2 +

1

𝑘𝑗
[𝜔2 + (1 − 𝜌)𝜎𝑗

2]) ,

𝐽

𝑗=1

 (19) 

 

which will generally be larger than 1/𝑊.  

This approximation for the power of the robust test with the CE working model entails two 

simplifications. First, the robust variance estimator itself is not exactly unbiased because the 

working model is not correctly specified (although the estimator is still asymptotically consistent 

as the number of studies increases). Second, the Satterthwaite degrees of freedom approximation 

is derived under the assumption that the working model is correctly specified (Tipton & 

Pustejovsky, 2015), which is not the case here. As a result, the approximation might not provide 

the correct Type-I error rate. Ignoring both of these complications for the time being, we propose 

to approximate the power of the robust test based on the CE model using the same Student-t 

approximation as above, but with non-centrality parameter 

 

 𝜆̈ =
𝜇 − 𝑑

√𝑆̈
 (20) 

 

and degrees of freedom 𝜉̈, calculated just as in Equation (16), but with 𝑤̈𝑗 in place of 𝑤𝑗. In the 

completely balanced case, 𝑆̈ = 𝑆, 𝜆̈ = 𝜆, and 𝜉̈ = 𝜉 = 𝐽 − 1, and so the test will have power equal 

to the other tests. If the data are not completely balanced, then the power of the CE test might 

diverge from that of the robust test based on the CHE working model.  

 

Multi-level Meta-Analysis 

Van den Noortgate et al. (2013, 2014) proposed handling dependent effect sizes via a multi-level 

meta-analysis model (MLMA), which includes both between-study and within-study random 

effects but ignores the possible correlation of effect size estimates drawn from the same sample. 

This model is a special case of the CHE, under the assumption that the correlation between 

sampling errors is 𝜌 = 0. When the true sampling correlation is non-zero, the model is mis-
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specified. However, Van den Noortgate et al. (2013, 2014) provided simulation evidence that 

model-based standard errors can still be accurate despite the model mis-specification.  

A challenge in analyzing the power of the MLMA model is that the variance component 

estimates may be systematically biased when the true sampling correlation is non-zero. For 

purposes of power calculations, we approximate the variance component estimators using the 

values that minimize the Kullback-Liebler divergence between the MLMA and the true data-

generating model (White, 1982). Let  𝜏̃2 and 𝜔̃2 denote the minimizing values of the between-

study and within-study variance components, respectively. The supplementary materials provide 

further details about how these quantities are calculated. 

The weights used with the MLMA model are then given by 

 

 𝑤̃𝑗 =
𝑘𝑗

(𝑘𝑗𝜏̃2 + 𝜔̃2 + 𝜎𝑗
2)
, (21) 

 

with overall average effect size estimator 𝜇 = ∑ 𝑤̃𝑗𝑇̅𝑗
𝐽
𝑗=1 /𝑊̃, where 𝑊̃ = ∑ 𝑤̃𝑗

𝐽
𝑗=1 . The variance 

of the overall average effect size estimator is 

 

 Var(𝜇̃) = 𝑆̃ =
1

𝑊̃2
∑𝑤̃𝑗

2 (𝜏2 + 𝜌𝜎𝑗
2 +

1

𝑘𝑗
[𝜔2 + (1 − 𝜌)𝜎𝑗

2]) .

𝐽

𝑗=1

 (22) 

 

For the MLMA, the model-based variance estimator is 1/𝑊̃, which may be a biased estimator for 

Var(𝜇̃) due to mis-specification.  

In practice, the MLMA model is commonly used with model-based variance estimation 

and 𝐽 − 1 degrees of freedom. However, for consistency with the other models that we have 

examined, we consider approximating the power of the test using Satterthwaite degrees of freedom 

for the model-based variance estimator. We calculate the Satterthwaite degrees of freedom using 

Equation (12), but substituting 𝜔̃2 for 𝜔̂2 and 𝑤̃𝑗 for 𝑤𝑗. Let 𝜁 denote the MLMA model-based 

degrees of freedom and let 𝜆̃ = (𝜇 − 𝑑)/𝑆̃. We approximate the power of the model-based Wald 

test with Satterthwaite degrees of freedom as 

278



Chapter III: Power Approximations for Meta-Analysis of Dependent Effect Sizes 
 

 
 

 𝐹𝑡(−𝑔 × 𝑐𝛼/2,𝜁̃|𝜁, 𝜆̃) + 1 − 𝐹𝑡(𝑔 × 𝑐𝛼/2,𝜁̃|𝜁, 𝜆̃), (23) 

 

where 𝑔 = 1/√𝑊̃𝑆̃. For the test with 𝐽 − 1 degrees of freedom, we replace 𝑐𝛼/2,𝜁̃ with 𝑐𝛼/2,𝐽−1.  

Fernandez-Castilla et al. (2020) suggested combining MLMA with robust variance 

estimation. We approximate the power of the robust test based on the MLMA model by following 

the same approach as with the CE model. We denote the Satterthwaite degrees of freedom based 

on the MLMA working model as 𝜉, calculated by using 𝑤̃𝑗 in place of 𝑤𝑗 in Equation (16). We 

then approximate the power of the robust test using Equation (15), with 𝜆̃ in place of 𝜆 and 𝜉 in 

place of 𝜉.  

 

Using the Power Approximations: A Computational Example 

To put each of these power approximations into practice, we need to determine the non-centrality 

parameters and the degrees of freedom of each of the tests. These quantities are a function of a) 

the number of included studies, 𝐽; b) the parameters of the data-generating model, 𝜏, 𝜔, and 𝜌; and 

c) the sample characteristics, including the primary study sample sizes and the number of effect 

size estimates in each primary study. We now demonstrate the mechanics of the power calculations 

using a hypothetical example.  

Consider an on-going review in which the investigators have identified 𝐽 = 12 studies and 

determined the (average) sampling variances and number of eligible outcomes available in each 

study. Table 1 lists these quantities. Recall that in our prior univariate power example, we assumed 

an average sampling variance of 𝜎2 = 4/100 and a low degree of heterogeneity, with 𝜏 =

√𝜎2/3  =  1/√75 = 0.115. Let us also assume 𝜔 =.10 and 𝜌 =  .5 and determine power under 

the CHE, CE, and MLMA models to detect an average effect size of 𝜇 = 0.1 against the null 

hypothesis 𝐻0: 𝜇 = 0. 

Given the assumed values of the variance components, we can calculate weights under the 

CHE, CE, and MLMA models, as well as under the univariate random effects model (i.e., ignoring 

multiplicity of effects). These weights are reported in the last four columns of Table 1. Given the 

CHE weights, we calculate 𝑊 = 230.65 and 𝜆 = 1.519. For the model-based test, Equation (12) 

gives 𝑥 = 23.798, 𝑦 = 9.5753, 𝑠 = 4740.7, 𝑡 = 23952, 𝑢 = 1944.4, and degrees of freedom 
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𝜁 = 8.37. With these degrees of freedom, the model-based test has power of 0.271. From Equation 

(16), the robust test has degrees of freedom 𝜉 = 8.71, leading to power of 0.273 (Equation 15).  

Based on the CE weights and assumed model parameters, we calculate 𝜏̈2 = 0.0176

(Equation 17), 𝑆̈ = 0.004412 (Equation 19), 𝜆̈ = 1.506 (Equation 20), and 𝜉̈ = 8.71. The robust 

test based on the CE working model therefore has power of 0.269.  

Based on the MLMA weights, we calculate 𝜏̃2 = 0.0305, 𝜔̃2 =0,  𝑆̃ = 0.004488,  𝜆̃ =

1.493, 𝑔 = 1.0037, 𝜁 = 9.54 and 𝜉 = 9.71. Using the MLMA model, the model-based test has

power of 0.267 and the robust test has power of 0.271. In this particular example, the model-based 

CHE test, the robust CHE test, the robust CE test, the model-based MLMA test, and the robust 

MLMA test all have quite similar power. Using the effective sample sizes listed in Table 1, the 

univariate approximation described in the previous section gives power of 0.259, slightly lower 

than the power of the more complex approximations.  

Using the Power Approximations in Practice 

Often, researchers will want to make prospective power calculations before completing the search 

and screening process of a systematic review. In this situation, the number of included studies and 

properties of those studies will not yet be known, and so the researcher will need to make 

TABLE 1. Hypothetical Studies in a Meta-Analysis 

Study 𝑁𝑗 𝜎𝑗
2 𝑘𝑗 CHE weight 

(𝑤𝑗)

CE weight 

(𝑤𝑗̈) 

MLMA weight 

(𝑤̃𝑗)

RE weight 

(𝑤𝑗
∗)

A 28 1 / 7 1 6.02 6.23 5.77 6.40 

B 32 1 / 8 3 10.00 7.01 13.87 7.23 

C 40 1 / 10 2 10.71 8.50 12.43 8.82 

D 48 1 / 12 3 13.85 9.91 17.17 10.34 

E 56 1 / 14 4 16.54 11.23 20.70 11.80 

F 64 1 / 16 2 15.34 12.48 16.21 13.19 

G 80 1 / 20 2 17.91 14.79 18.03 15.79 

H 96 1 / 24 1 15.38 16.87 13.87 18.18 

I 128 1 / 32 2 23.94 20.46 21.70 22.43 

J 180 1 / 45 3 31.76 25.10 26.41 28.12 

K 192 1 / 48 5 35.93 26.00 28.88 29.27 

L 256 1 / 64 2 33.28 30.08 26.13 34.53 
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assumptions about the distribution of sampling variances and number of effect sizes per study. 

Assuming complete balance will generally yield optimistic power calculations (i.e., higher power 

than what would be expected in practice). Alternative approaches would be to simulate 𝜎𝑗
2 and 𝑘𝑗 

from stylized distributions with specified parameters or to sample 𝜎𝑗
2and 𝑘𝑗 from an empirical 

distribution of study characteristics—perhaps based on pilot data or previous syntheses on similar 

research topics. With approaches that simulate or sample study characteristics, the power 

approximations given in Equations (11), (15), and (23) become random quantities, with 

distributions governed by the distribution of 𝜎𝑗
2 and 𝑘𝑗. For prospective power calculations, we 

can calculate power as the expectation over this distribution, such as by drawing many repeated 

samples of size 𝐽, calculating power, and then averaging over the samples.  

We now demonstrate the power calculations as they might be used in practice, by 

developing power estimates based on the characteristics of primary studies included in the DBFJ17 

meta-analysis. For purposes of illustration, we used the subsample of 77 studies (comprising 317 

unique effect sizes) with effective sample sizes of no more than 500 and no more than 20 effect 

sizes per study. Many of the included studies were cluster-randomized trials, for which sampling 

variances were computed using cluster adjustment formulas from Hedges (2007). In the analytic 

sample of 77 studies, effective sample sizes ranged from 19 to 485, with a median of 87, a mean 

of 140, and a standard deviation of 125. The average sampling variance was 𝜎2 =  0.068. Included 

studies reported between 1 and 18 effect sizes, with a median of 3, a mean of 4.1, and a standard 

deviation of 3.5. 

We calculate power to detect an average effect of 𝜇 = 0.1, again assuming 𝜏 = 0.115, 𝜔 =

0.10, and 𝜌 =  .5 for sample sizes ranging from 𝐽 = 5 to 𝐽 = 40. Figure 1 displays the power of 

each model for which we have developed approximations. Each panel corresponds to a different 

method of determining the distribution of study characteristics. In the left panel, we assume 

completely balanced samples with 𝜎𝑗
2 = .068 and 𝑘𝑗 = 4.1, the average values of the studies in 

DBFJ17. Because the sample characteristics are perfectly balanced, the power of all three working 

models for dependent effect sizes coincide and can be calculated directly from the formulas, 

without re-sampling. In the middle panel of Figure 1, we determined the sample characteristics by 

drawing 4/𝜎𝑗
2 from a gamma distribution with shape 𝛼 =  1.33 and 𝑟𝑎𝑡𝑒 =  .0095 (which we 

obtained from fitting to the effective sample sizes from DBFJ17 by maximum likelihood using the 
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fitdistr function from the MASS R package, see Ripley et al., 2013) and by sampling 𝑘𝑗  ~ 1 +

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(3.1). In the right panel of Figure 1, we determine the sample characteristics by repeatedly 

sampling directly from the empirical distribution of sampling variances and number of effect sizes 

found in DBFJ17.  

Across all three panels, the power of the aggregate-level approximation is notably lower 

because it does not account for the availability of multiple effect sizes per study. The power of the 

model-based and robust tests under the correctly specified CHE working model are very similar 

across all three panels. Because the CE working model uses weights that are not entirely efficient 

when the study characteristics are not balanced, the CE-RVE test has slightly lower power than 

the tests based on the CHE, but the difference is only noticeable when 𝑘𝑗 and 𝜎𝑗
2 are sampled from

the pilot data. Similarly, the MLMA tests have lower power than the CHE tests because the MLMA 

tests use weights that are not entirely efficient.  

Comparing across panels, the power levels of each test are substantially higher when based 

on balanced study characteristics than when based on the stylized distributions or empirical 

disributions. For instance, with 𝐽 = 25 studies, the CHE-RVE test has power of 0.79 when 

assuming balanced study characteristics, but power of only 0.70 when using the stylized 

distribution or 0.65 when using the empirical distribution. A very similar pattern holds for the other 

model-based and robust tests (see Supplementary Figure S1 for further details). 

FIGURE 1. Power for finding 𝜇 = 0.1 with 𝜏 = 0.115, 𝜔 =  0.1 and 𝜌 =  .5 across three 

different methods for obtaining 𝑛𝑗  and 𝜎𝑗
2. For the stylized and pilot sample methods, the

average power is estimated across 100 iterations. Dashed lines indicate power of 80 percent. 
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Simulation Study 

We used Monte Carlo simulation to validate the new power approximations and investigate the 

performance of different working models and inferential approaches for testing overall average 

effects. We designed the simulations to address three specific aims. First, we examine the accuracy 

of the proposed power approximations by comparing predicted power levels to simulation-based 

estimates of power, which fully capture the uncertainties of estimating the working models from 

limited data. In these analyses, we are interested both in the overall accuracy of the approximations 

as well as the extent to which the assumed distribution of 𝜎𝑗
2 and 𝑘𝑗 matters for obtaining accurate 

power estimates. Second, we evaluate the empirical Type I error rates of tests based on the different 

working models and inferential approaches for which we have provided power approximations. 

Third, we examine the relative power of tests that adequately control Type I error rates. Across all 

three aims, we seek to provide a basis for clearer recommendations about how to select a working 

model and an inferential approach in meta-analyses of dependent effect sizes.   

 

Data Generation Process 

The simulations focused on a data-generating process in which the true error structure followed 

the correlated-hierarchical effect (CHE) working model from Equations (4) and (5) because this 

model nests the simpler correlated effect model and MLMA model. The data generating 

procedures followed the same process as the simulations reported by Pustejovsky and Tipton 

(2021), except that we used the DBFJ17 data to inform the distribution of study characteristics. 

We imposed the same restrictions as in the example described in the previous section, after which 

the analytic sample was comprised of 77 studies, with an average effective sample size of 140 and 

an average of 4.1 effect sizes per study. 

We simulated standardized mean difference (SMD) effect size estimates because this is 

one of the most common metrics encountered in meta-analyses in education (Ahn et al., 2012; 

Tipton et al., 2019). Similar to Pustejovsky and Tipton (2021), we generated effect size estimates 

by first simulating study-specific characteristics and effect sizes. We simulated effective sample 

sizes 𝑁𝑗 and the number of effect sizes 𝑘𝑗 by sampling from the study characteristics of DBFJ17. 

We then simulated true effect sizes based on Equation (5), given values of the overall average 

effect size 𝜇, between-study SD 𝜏, and within-study SD 𝜔. We assumed that the effect size 
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estimates from a given study were equi-correlated with a common correlation 𝜌. We focus on this 

case in order to compare the approximations against the true simulated power when the CHE 

working model is correctly specified.   

Given the study-specific parameters 𝑁𝑗, 𝑘𝑗, and 𝜹𝑗 = (𝛿1𝑗 , … , 𝛿𝑘𝑗𝑗) ′, we simulated 

unstandardized mean difference effect size estimates for study 𝑗 from a normal distribution with 

mean 𝜹𝑗 and covariance matrix 4𝚺𝑗/𝑁𝑗, where 𝚺𝑗 is a 𝑘𝑗 × 𝑘𝑗  compound symmetric matrix with 

unit diagonal entries and off-diagonal entries of 𝜌. We simulated a pooled covariance matrix for 

study 𝑗 by drawing from a Wishart distribution with 𝑁𝑗 − 2 degrees of freedom and scale matrix 

𝚺𝑗, then dividing the result by 𝑁𝑗 − 2. We then calculated study-specific standardized mean 

differences by dividing the unstandardized mean differences by the square root of the diagonal 

entries in the pooled covariance matrix, then applied the Hedges’ g correction. We calculated 

sampling variances for each effect size estimate 𝑔𝑖𝑗 as   

 

𝑉𝑖𝑗 = (1 − 
3

4(𝑁𝑗 − 2) − 1
)

2

(
4

𝑁𝑗
+

𝑔𝑖𝑗
2

2(𝑁𝑗 − 2)
) 

 

This approach to simulating summary statistics is equivalent to simulating raw data from a 

multivariate normal distribution within each group, then calculating the effect size estimate and its 

variance from the raw data (Pustejovsky & Tipton, 2021).  

 

Estimators 

For each simulated dataset, we applied eight different tests that varied in terms of the working 

model, the variance estimator, and the method for calculating degrees of freedom (d.f.). 

Specifically, we calculated all five tests for which we have developed power approximations, 

including: the CHE working model with model-based variance and with robust variance 

estimation, the CE working model with robust variance estimation, the MLMA model with model-

based variance and with robust variance estimation. For each of these tests, we used the 

corresponding Satterthwaite d.f. Because the Satterthwaite d.f. for the model-based variance 

estimator is novel and not typically applied in practice, we also examined tests based on the CHE 

working model and the MLMA working model with model-based variance and the more 
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conventional choice of 𝐽 − 1 d.f. Finally, we also included a test based on the common approach 

of aggregating effect sizes to the study level. For the aggregated effect sizes, we used a univariate 

random effects model, with Knapp-Hartung adjusted standard error (Hartung & Knapp, 2001) and 

𝐽 − 1 d.f. We estimated all the above models using the metafor (Viechtbauer, 2010), 

robumeta (Fisher & Tipton, 2015), and clubSandwich (Pustejovsky, 2020) packages in R. 

 

Experimental Design 

We examined the performance of the tests using a full factorial design with 768 unique conditions. 

As shown in Table 2, we varied the number of independent studies from 𝐽 = 10 to 60. These 

represent a small to moderate number of studies compared to sample sizes encountered in meta-

analyses in education (Tipton et al., 2019). We used a maximum of 60 studies because power 

tended to reach ceiling levels beyond this range. We set the true average effect size to values of 𝜇 

= 0 (to investigate the Type I error rate) or 0.05, 0.1, or 0.2 (to examine power). The latter values 

represent a small, moderate, and large effect sizes for educational interventions, as suggested by 

Kraft (2020). We chose 𝜏 =  0.05, 0.2, or 0.4 to represent a small, medium, or large amount of 

between-study heterogeneity, respectively. We used 𝜔 = 0.0, 0.05, 0.1, or 0.2 to represent a no, 

small, medium, or large amounts of within-study heterogeneity. Lastly, we let values of 𝜌 = 0, .2, 

.5,.8 represent no, small, moderate, and large levels of correlation between effect size estimates 

from the same study. In conditions where 𝜌 = 0, the MLMA model is correctly specified (as is the 

CHE), whereas in conditions where 𝜌 > 0, the MLMA model is increasingly mis-specified. 

  

 

 

Table 2 

Design factors for the simulation study 

 

Factor Parameter values 

Number of studies (𝐽) 10, 20, 40, 60 

Average effect size (𝜇) 0.00, 0.05, 0.10, 0.20 

Between-study heterogeneity (𝜏) 0.05, 0.20, 0.40 

Within-study heterogeneity (𝜔) 0.00, 0.05, 0.10, 0.20 

Sampling correlation (𝜌) .0, .2, .5, .8 
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Performance Assessment 

The main performance criterion of interest was the rejection rate of each test, which we estimated 

by calculating the proportion of replications in which a test returned a p-value less than a specific 

𝛼-level. For conditions where 𝜇 = 0, the rejection rate corresponds to Type I error. For conditions 

with 𝜇 > 0, the rejection rate is the power of the test. We calculated rejection rates of each test for 

𝛼 = .01, .05, .10, although we mainly concentrate on the conventional level of 𝛼 = .05. For each 

simulation condition, we generated 4000 replications. For true rejection rates of .05, Monte Carlo 

standard errors were less than .0035; for rejection rates of .5, Monte Carlo standard errors were 

less than .0080.  

 

Replication Materials 

R code for replicating the simulations and numerical results from all simulation conditions are 

available on the Open Science Framework at https://osf.io/auj2e/. 

 

Results 

We describe results of the simulation study pertaining to each of the three aims.  

 

Finding 1a: Power approximations are accurate when based on empirical study characteristics  

Our first aim was to validate the proposed power approximations for meta-analysis models of 

dependent effect sizes. Figure 2 plots the approximated power versus the true (simulated) power 

for the tests based on the CHE or CE working models, where the approximation formulas and the 

simulation conditions are all premised upon the same parameter values. Different shapes and 

colors correspond to different methods of sampling 𝑘𝑗 and 𝑁𝑗. Points above the 45-degree line 

represent conditions where the approximation over-states the true power level. Supplementary 

Figure S2 depicts the same comparisons for the tests based on the MLMA working model.  

The approximation formulas for the CHE, CE, and MLMA working models are quite 

accurate when the approximations are based on sampling from the pilot data. The approximations 

nearly perfectly reproduce the simulated power levels for the robust tests (CHE-RVE, CE-RVE, 

and MLMA-RVE) when sampling 𝑘𝑗 and 𝑁𝑗 from the pilot data. For the CHE and MLMA model-

based tests with Satterthwaite d.f., the power approximations were sometimes too optimistic 
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(exceeding the simulated power level), whereas using the model-based tests with 𝐽 − 1 degrees of 

freedom sometimes led to overly cautious power levels. This indicates that the approximations for 

the RVE-based tests are more accurate than those for the model-based tests when the analyst has 

pilot data available. 

 

Finding 1b: Power approximations generally over-state true power when assuming a stylized 

distribution or completely balanced samples. 

Figure 2 and Supplementary Figure S2 also indicate that the power approximations generally over-

state the true power of all models when the approximations are based either on the stylized 

distributions for 𝑘𝑗 and 𝑁𝑗 or on the assumption of complete balance. This pattern is most 

pronounced for the CE-RVE and the CHE and MLMA models with Satterthwaite d.f. 

Consequently, we cannot suggest using the approximations for these two models when sampling 

𝑘𝑗 and 𝑁𝑗 is based on either stylized distributions or complete-balance assumptions. In contrast, 

the approximation formulas for the CHE-RVE and MLMA-RVE tests over-state the true power to 

a lesser extent, i.e. the approximations never exceed 10 percentage points more than true the power. 

The approximations based on stylized sample distributions for the CHE and MLMA models with 

𝐽 − 1 degrees of freedom seem also to behave adequately, although for some conditions these 

approximations tend to underestimate the true power. Our results suggest that power 

approximations premised upon the assumption of complete balanced sample characteristics 

generally perform poorly across all models. Therefore, when no pilot data is available to the 

researcher, we recommend approximating power with some kind of stylized distribution of 𝑘𝑗 and 

𝑁𝑗 (or 𝜎𝑗
2) and to anticipate that the true power may be at least 5 to 10 percentage points lower 

than the approximation. 

 

Finding 1c: Simple power approximations do not accurately predict true power levels 

Researchers might also wonder about how the original, simpler power approximations for 

univariate meta-analysis (Hedges & Pigott, 2001) perform for anticipating power in meta-analyses 

involving of dependent effect sizes. Figures S5-S7 in the supplementary material illustrate the 

performance of the univariate approximation formula to predict the true power both for the RE 

model estimate using synthetic effect sizes and the more complex models using RVE. From these 

supplementary investigations, the original power approximation performs inadequately as a means 
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for estimating the true power of all models handling dependency, including the RE model. Across 

conditions, the univariate approximations often over- or under-estimate the true simulated power 

by 20 percentage points or more. Thus, we do not recommend using the original univariate power 

approximations for estimating power of the overall average mean effect size in the presence of 

dependent effect sizes.  

Finding 2: Robust variance estimation guards against Type I error with all working models 

Figure 3 and Supplementary Figure S3 display the distribution of simulated Type I error 

rates for the eight different tests under consideration. Tests using 𝐽 − 1 d.f. yielded Type I error 

rates that were substantially above nominal levels.  This pattern is especially evident when the 

number of studies is small (10) to moderate (40). Even with 𝐽 = 60 studies, the aggregated model 

fails to control the nominal Type I error when 𝜌 = 0 or 𝜌 = .2.  

Tests based on model-based variance estimation and Satterthwaite d.f. (CHE-Model+Satt 

and MLMA-Model+Satt) appear conservative, sometimes yielding Type I error rates substantially 

below nominal when the number of studies is 𝐽 = 20 or fewer. Under these scenarios, they also 

cover the widest range of rejection rates across the different simulation conditions (based on the 

width of the interquartile range of the boxplots). Concretely, this indicates that the Type I error 

rate of this set of models fluctuates substantially when the number of independent studies is small. 

Although conservative, these models should be prioritized relative to the models with Type I error 

rates exceeding the nominal level.   
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Ideally, a hypothesis testing procedure should not only control the Type I error rate so that 

it does not exceed the nominal level but should also come as close to the nominal level as possible. 

In this regard, it can be seen that all tests based on RVE with small-sample adjusted standard errors 

and Satterthwaite d.f. are close to or equal to the nominal rejection rate. Using small sample 

adjustments is particularly relevant for multilevel meta-analysis models because these methods 

usually use model-based tests with large-sample approximations, which can be inaccurate when 

the total number of studies is small. Indeed, results in Figure 3 demonstrate that the conventional 

MLMA test with 𝐽 − 1 degrees of freedom requires a large number of studies (𝐽 = 60) to attain 

near-nominal Type I error—even when 𝜌 = 0 so that the MLMA is correctly specified. Similar to 

findings from Fernández-Castilla et al. (2020), we find that combining the MLMA model with 

RVE to guard against misspecification adequately controls Type I error. 

 

Finding 3: Only small power differences between RVE models 

Figure 4 and Supplementary Figure S4 display the power of the CE-RVE and MLMA-

RVE models, respectively, relative to the power of CHE-RVE, across varying number of studies, 

sizes of the within-study between outcomes correlations for small to large effect sizes and various 

amounts of within-study heterogeneity. Points below 1 indicate a loss of power relative to the 

CHE-RVE model. Under the conditions examined, one would expect that tests based on the CHE 

will achieve the highest possible power because they use a working model that is consistent with 

the true data-generating model. In contrast, the CE-RVE tests are based on a mis-specified working 

model and also use weights that are not fully efficient. In light of this, it is interesting that the CE-

RVE tests do not lose substantial power relative to CHE-RVE. Under most conditions, the relative 

power of CE-RVE tests was 80% or higher, and often closer to 95%. Similarly, the MLMA model 

is only correctly specified when 𝜌 = 0. When correctly specified, it is equivalent to the CHE 

working model and thus the MLMA-RVE test has power identical to that of CHE-RVE. For 𝜌 >

0, the MLMA working model is mis-specified. Interestingly, though, the MLMA-RVE test still 

retains most of the power of the CHE-RVE test, with relative power of 90% or more. These results 

suggest that all models for handling dependent effects are reliable with regard to estimating the 

overall average effect size (even when the total number of studies is small) as long as these are 

guarded for any misspecifications via RVE. 
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Discussion and Conclusion 

Methods for handling dependent effect sizes have grown increasingly complex, which has created 

challenges for how to conduct prospective power analysis for meta-analysis. In this study, we 

developed new approximation formulas for several Wald-type tests based on the CHE, CE, and 

MLMA models, and we evaluated the performance of the approximations via Monte Carlo 

simulations assuming assuming a correlated-and-hierarchical effects data-generating process. The 

new approximation formulas can closely match the true model power when the relevant primary 

study characteristics, including sample variance, 𝜎𝑗
2, or average sample size per study 𝑁𝑗, and the 

number of effect sizes per study, 𝑘𝑗, are sampled from pilot data with similar characteristics to the 

data used for the eventual meta-analysis. 

We acknowledge that it will not always possible for systematic reviewers to have access 

to reliable or relevant pilot data that can inform their power analysis. Therefore, we also tested the 

performance of power approximations when these are either based on completely balanced study 

characteristics (i.e. all studies have equal sampling variance and the same number of effect sizes) 

or on a stylized distribution of 𝑘𝑗 and 𝜎𝑗
2. We found that most of the power approximations over-

estimate the true power to some extent. Approximations based on the assumption of complete 

balance perform worse (yielding overly optimistic power estimates) than approximations that 

consider imbalance across studies. We thus do not recommend researchers assume complete 

balance in practice. When no pilot data are available, we recommend reviewers use the 

approximations for working models using RVE based on stylized distributions of 𝑘𝑗 and 𝜎𝑗
2 (or 

𝑁𝑗) because these approximations rarely overestimated the true power by more than 10 percentage 

points. We tentatively suggest that reviewers should anticipate a systematic power loss of 5-10 

percent when conducting power analysis when using stylized distributions.  

From our simulation study, we also investigated Type I error rates and, for the models that 

adequately controlled the nominal Type I error rate, relative power. The simulation results provide 

further evidence that meta-analysts should routinely guard against model misspecification by using 

robust variance estimation. For tests of overall average effect sizes, using robust variance 

estimation has little cost in terms of power. If using model-based inference, meta-analysts should 

use the more conservative test based on Satterthwaite degrees of freedom, particularly when the 
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total number of studies is small or moderate (i.e. 10-40). Our results support the previous 

recommendations from Tipton (2015) to routinely use both small-sample adjustments and 

Satterthwaite d.f. Compared to model-based variance approaches with 𝐽 − 1 degress of freedom, 

tests based on robust variance estimation more adequately control the nominal rejection rate and 

yield more adequate power estimates. In addition, the power differences between the CE, CHE, 

and MLMA models are minor when appling RVE. That said, and in line with Pustejovsky and 

Tipton (2021), we recommend using working models, such as the CHE, that capture the main 

features of the data structures that meta-analysts are likely to encounter in practice.  

Predicated upon our results, we generally recommend using the new power approximation 

for the models using RVE, because this approximation seems to perform most reliably across all 

techniques for obtaining 𝑘𝑗 and 𝜎𝑗
2 (or 𝑁𝑗). We also recommend conducting power analysis for one

(ideally pre-specified) model, only, to reduce “researcher’s degrees of freedom” in the eventual 

meta-analysis. We further propose to calculate power by drawing many repeated samples of 𝑘𝑗 

and 𝜎𝑗
2 of size 𝐽, and then averaging the power over the samples, when approximations are not

based on the complete balance assumption. Lastly, we find that the original univariate power 

approximation (Hedges & Pigott, 2001) performs insufficiently for purposes of estimating power 

of both the univariate model using synthetic effect sizes or the more complex family of models 

using RVE. We, therefore, recommend no longer using the univariate and more simple formulas 

to approximate power for models handling dependent effect sizes. Future research is needed to 

investigate how these univariate power formulas perform when the true data-generation process 

follows an independent effects structure.  

The work in this article does have some clear limitations. Although we find that the 

approximations perform well when based on pilot data, it may be that available pilot data are not 

representative of the target population of studies (for instance, by imposing too much or too little 

imbalance in the data), which could distort the accuracy of the proposed approximations. 

Furthermore, our simulation results are limited by the selected data-generating model and 

parameters. The most clear limitation of this study is that we have only concentrated on the 

situation in which the CHE working model is consistent with the true data-generation process, a 

best-case scenario that implies that the CHE working model will have higher power than the CE 

or MLMA models. In future work, it might be useful to elaborate upon the power approximations 
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by allowing for a specific degree of model mis-specification of the working model, such as by 

assuming a correlation of 𝜌 = .6 but allowing the true data-generating process to have a correlation 

of . 4 < 𝜌 < .8.  

This study is limited in scope in that the simulations focused on the common case of 

standardized mean differences effect sizes. The power formulas can readily be applied to some 

other effect size metrics such as Fisher’s z-transformed correlation coefficient, but application to 

metrics such as log odds ratios or risk ratios requires making further assumptions. Future research 

needs to develop guidance about how to implement the power calculations under a range of 

scenarios encountered by working meta-analysts.  

 In this article, we have only focused on power of tests for the overall average effect size, 

which clearly limits the application of the proposed methods. For testing the overall average effect 

size, we found that the choice of working model (CHE or CE or MLMA) leads to only minor 

differences in power. However, this finding may not generalize to more complex models involving 

moderator variables. Rather, Pustejovsky and Tipton (2021) found that using CHE can lead to 

substantially more precise estimates than using CE for meta-regression models with predictor 

variables that vary within study. Thus, the choice of working model may be more consequential 

for models that involve potential moderator variables. 

Developing power calculations for more intricate models, such as meta-regressions with 

one or multiple predictors, requires making strong assumptions about the distribution of covariates 

across studies and effect sizes, which may be difficult to specify a priori. However, if reviewers 

have access to detailed and relevant pilot data, power analysis for meta-regression can be 

conducted via Monte Carlo simulation. Although not trivial, future research could focus on making 

power simulation for meta-regression models more accessible to the applied meta-analyst.  
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Appendix 4: Supplementary Material (Chapter III) 

Kullback-Liebler Divergence for the Multi-Level Meta-Analysis Model 

In developing power approximations for the correlated-and-hierarchical effects (CHE) 

model, we make the simplifying assumption that the variance component estimates are equal to 

the corresponding parameter values. This is reasonable because we assume that the model is cor-

rectly specified, and so restricted maximum likelihood estimates will be close to unbiased. How-

ever, this simplification does not work for purposes of developing power approximations for the 

multi-level meta-analysis (MLMA) model because the model is mis-specified. The challenge is 

thus to determine the behavior of the variance component estimates when the true data-generating 

process follows the correlated-and-hierarchical effects model.  

We propose to approximate the variance component estimates from the MLMA model by 

using their asymptotic limits. White (1982) demonstrated that, under suitable regularity conditions, 

the maximum likelihood estimator of a mis-specified model convergences to the value that mini-

mizes the Kullback-Liebler divergence (KLD) between the mis-specified model and the true data-

generating process. The KLD is the expectation (under the true data-generating process) of the 

difference between the log likelihood of the true data-generating process and the log likelihood of 

the mis-specified model.  

Consider the CHE data-generating process (Equation 7 in the main text) for a collection of 

𝐽 studies, each of which includes 𝑘𝑗 effect size estimates. Let 𝟏𝑗 denote a 𝑘𝑗 × 1 vector of 1’s, let 

𝐈𝑗  be a 𝑘𝑗 × 𝑘𝑗 identity matrix, and let 𝐓𝑗  be the 𝑘𝑗 × 1 vector of effect size estimates from study 𝑗, 

for 𝑗 = 1, … , 𝐽. The CHE data-generating process can be written succinctly as  

 

𝐓𝑗 ∼ 𝑁(𝜇𝟏𝑗 , 𝚽𝑗), 

 

where  

 

 𝚽𝑗 = (𝜏2 + 𝜌𝜎𝑗
2)𝟏𝑗𝟏𝑗

′ + (𝜔2 + (1 − 𝜌)𝜎𝑗
2)𝐈𝑗 . 

 

Twice the restricted log likelihood of the CHE model is therefore 
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2 × 𝑙𝑅(𝜏2, 𝜔2, 𝜌) = 𝑐 − ∑ log|𝚽𝑗|

𝐽

𝑗=1

− log (∑ 𝟏𝑗
′𝚽𝑗

−1𝟏𝑗

𝐽

𝑗=1

) − 𝐓′𝐐𝐓,

where 𝐐 = 𝚽−1 − 𝚽−1𝟏(𝟏′𝚽−1𝟏)−1𝟏′𝚽−1, and where 𝚽𝑗 is a function of the variance compo-

nent parameters 𝜏2, 𝜔2, and 𝜌. Note that the MLMA is a special case of the CHE, and so its

restricted log likelihood is the same as above, but fixing 𝜌 = 0. Let 𝜏̃2 and 𝜔̃2 denote the variance

component parameters under the MLMA. Let 𝛀𝑗 denote the variance-covariance of 𝐓𝑗  under the 

MLMA, given by  

𝛀𝑗 = 𝜏̃2𝟏𝑗𝟏𝑗
′ + (𝜔̃2 + 𝜎𝑗

2)𝐈𝑗 .

Let 𝐐̃ = 𝛀−1 − 𝛀−1𝟏(𝟏′𝛀−1𝟏)−1𝟏′𝛀−1. The KLD between the MLMA and the CHE can then be

written as 

𝐾𝐿𝐷(𝜏̃2, 𝜔̃2, 𝜏2, 𝜔2, 𝜌) = E [log (
𝑙𝑅(𝜏2, 𝜔2, 𝜌)

𝑙𝑅(𝜏̃2, 𝜔̃2, 0)
)]

= 𝑐 + ∑ log|𝛀𝑗|

𝐽

𝑗=1

+ log (∑ 𝟏𝑗
′𝛀𝑗

−1𝟏𝑗

𝐽

𝑗=1

) + E[𝐓′𝐐̃𝐓]

= 𝑐 + ∑ log|𝛀𝑗|

𝐽

𝑗=1

+ log (∑ 𝟏𝑗
′𝛀𝑗

−1𝟏𝑗

𝐽

𝑗=1

) + tr(𝐐̃𝚽), 

where 𝑐 is a constant that does not depend on 𝜏̃2 or 𝜔̃2. Denote the inverse-variance weights under

the MLMA working model as 

𝑤̃𝑗 =
𝑘𝑗

𝑘𝑗𝜏̃2 + 𝜔̃2 + 𝜎𝑗
2 , with 𝑊̃ = ∑ 𝑤̃𝑗

𝐽

𝑗=1

. 

and the inverse-variance weights under the CHE as 
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𝑤𝑗 =
𝑘𝑗

𝑘𝑗𝜏2 + 𝑘𝑗𝜌𝜎𝑗
2 + 𝜔2 + (1 − 𝜌)𝜎𝑗

2. 

 

Then we can write 

 

∑ log|𝛀𝑗|

𝐽

𝑗=1

= ∑ [(𝑘𝑗 − 1) log(𝜔̃2 + 𝜎𝑗
2) − log (

𝑤̃𝑗

𝑘𝑗
)]

𝐽

𝑗=1

, 

log (∑ 𝟏𝑗
′𝛀𝑗

−1𝟏𝑗

𝐽

𝑗=1

) = log 𝑊̃, 

 

And 

 

tr(𝐐̃𝚽) = ∑ [(𝑘𝑗 − 1) (
𝜔2 + (1 − 𝜌)𝜎𝑗

2

𝜔̃2 + 𝜎𝑗
2 ) +

𝑤̃𝑗

𝑤𝑗
(1 −

𝑤̃𝑗

𝑊̃
)]

𝐽

𝑗=1

. 

 

Therefore,  

 

𝐾𝐿𝐷(𝜏̃2, 𝜔̃2, 𝜏2, 𝜔2, 𝜌)

= 𝑐 + ∑(𝑘𝑗 − 1) log(𝜔̃2 + 𝜎𝑗
2)

𝐽

𝑗=1

− ∑ log (
𝑤̃𝑗

𝑘𝑗
)

𝐽

𝑗=1

+ log 𝑊̃

+ ∑(𝑘𝑗 − 1) (
𝜔2 + (1 − 𝜌)𝜎𝑗

2

𝜔̃2 + 𝜎𝑗
2 )

𝐽

𝑗=1

+ ∑
𝑤̃𝑗

𝑤𝑗
(1 −

𝑤̃𝑗

𝑊̃
)

𝐽

𝑗=1

. 

 

The asymptotic limits of the variance component estimators under the MLMA are the values of 𝜏̃2 

and 𝜔̃2 that minimize 𝐾𝐿𝐷(𝜏̃2, 𝜔̃2, 𝜏2, 𝜔2, 𝜌) for fixed 𝜏2, 𝜔2, and 𝜌. Although 𝐾𝐿𝐷 is a compli-

cated, non-linear objective function, it can be minimized numerically using standard algorithms. 

For purposes of power calculations, we find the minima using the R function optim(), with a 

limited-memory, Box-constrained quasi-Newton method, setting method = “L-BFGS-B”. 
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The asymptotic limits have simpler solutions when the study characteristics are balanced, 

such that 𝑘1 = 𝑘2 = ⋯ = 𝑘𝐽 = 𝑘 and 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝐽
2 = 𝜎2. If the study characteristics are

balanced and if 𝜔2 > 𝜌𝜎2, then the limits are given by

𝜏̃2 = 𝜏2 + 𝜌𝜎2     and     𝜔̃2 = 𝜔2 − 𝜌𝜎2.

If the study characteristics are only moderately imbalanced, then we expect that the exact asymp-

totic limits will still be quite close to these values. More generally, we expect that the estimator 

for 𝜏2 will be positively biased and the estimator for 𝜔2 will be negatively biased under the mis-

specified MLMA model, and the size of the bias will depend on the magnitude of the sampling 

variances (𝜎1
2, … , 𝜎𝐽

2) and true sampling correlation 𝜌.
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FIGURE S1. Power approximation for 𝜇 = 0.1 with 𝜏 = 0.115, 𝜔 =  0.1 and 𝜌 =  .5 across var-

ious models for handling dependent effect sizes 
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Performance of the univariate approximation formula 

FIGURE S5. Univariate power approximation performance for approximating the true simulated 

power of the RE and the RVE models, respectively, across various approaches for obtaining the 

sample distributions 
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FIGURE S6. Performance of the univariate power approximation to estimate the true simulated 

power for RE and RVE across varying numbers of studies using the empirical approach to obtain 

sample distributions  
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FIGURE S7. Performance of the univariate power approximation to estimate the true simulated 

power for RE and RVE models across varying numbers of studies assuming complete balance 
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Chapter IV: Power Guidelines and the POMADE R Package 

ABSTRACT 

In a recent paper, Vembye, Pustejovsky, & Pigott developed power approximation formulas for 

meta-analysis of dependent effect sizes across the multi-level meta-analysis (MLMA), the corre-

lated effects (CE), and the correlated-hierarchical effects (CHE) models. However, the paper 

mainly focused on the statistical accuracy and quality assurance of the performance of the newly 

developed methods and less on the practical challenges encountered in applying the methods. The 

goal of this paper is to support applied reviewers by making these rather complex power approxi-

mation formulas practically accessible and providing guidance about obtaining the relevant quan-

tities required to conduct reliable power approximations for meta-analyses involving statistically 

dependent effect sizes. In this paper, we introduce guidelines for conducting power approximations 

for meta-analyses of dependent effect sizes and introduce the POMADE R package for this pur-

pose. We also present an overview of resources where reviewers can find information regarding 

parameters and quantities for making reasonable assumptions for the power approximations intro-

duced here. We then provide R codes and examples for how to execute power analyses of the CHE 

model when guarding against misspecification via robust variance estimation (CHE-RVE). Hereto, 

we also show how to approximate the number of studies required to detect a given effect size 

considered to be of practical concern and how to approximate the minimum detectable effect size 

under fixed data and model conditions as well as with prespecified levels of statistical significance 

and power. Finally, we introduce new graphical tools, including the traffic light power plot for 

presenting power analyses across a range of plausible scenarios. 

KEYWORDS: power, meta-analysis, dependent effect sizes, CHE-RVE model, POMADE R pack-

age, traffic light power plot 
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HIGHLIGHTS 

What is already known 

• Power of meta-analysis models for handling statistically dependent effect sizes can be ap-

proximated but is restricted by no common guidelines for how to be conducted reliably.  

• Power approximations for meta-analysis of dependent effect sizes perform reliably when 

based on true empirical assumptions. 

• Power approximations generally overestimate the true power by more than 10 percent 

when based on balanced assumptions, and these do not hold empirically. 

• Power approximation involving robust variance estimation (RVE) outperforms other 

power approximation methods.  

What is new 

• General guidelines for the conduct of power analysis involving statistically dependent ef-

fect sizes.  

• The POMADE R package for conducting power analyses of meta-analysis of dependent 

effects.  

• Graphical tools for presenting a priori power analyses across a range of possible assump-

tions.  

Potential impact 

• Makes power analysis for meta-analysis of dependent effect sizes easily accessible for 

applied reviewers and a widely used practice in systematic reviews involving meta-analy-

sis. 

• Expansion of open science and open data practices.  
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1 INTRODUCTION 

In a recent paper, Vembye, Pustejovsky, and Pigott1 developed power approximation formulas for 

meta-analysis of dependent effect sizes across the multi-level meta-analysis (MLMA), the corre-

lated effects (CE), and the correlated-hierarchical effects (CHE) models. However, the focus of 

that work was on the technical development of power formulas and assessing the accuracy of the 

proposed approximations rather than on the general use of the developed methods among applied 

reviewers and meta-analysts. There remains a need to consider the practical challenges encoun-

tered by reviewers in obtaining the relevant quantities required to conduct reliable power approx-

imations for meta-analyses of dependent effect sizes. In this article, we provide guidelines for 

conducting approximations for the power of meta-analyses of dependent effect sizes and introduce 

the POMADE R package for this purpose. The ultimate goal is to make power approximation for-

mulas for meta-analysis of dependent effect sizes accessible for applied reviewers.  

The paper has four major aims. First, we present an overview of resources where reviewers 

can find information regarding the parameters and quantities needed to reliably execute power 

approximations. Second, we provide R codes and examples for how to conduct power analyses of 

the CHE model guarding against misspecification via robust variance estimation (CHE-RVE) 

since we believe that this model most adequately takes into account the dependency structures 

encountered in the social and behavioral sciences. Third, we introduce R codes for how to approx-

imate the number of studies required to detect a given effect size considered to be of practical 

concern and how to approximate the minimum detectable effect size under fixed data and model 

conditions as well as with prespecified levels of statistical significance and power. Fourth, we 

introduce new graphical tools for presenting power analyses, including the traffic light power plot 

for presenting power analyses across a range of plausible scenarios of design features and model 

parameters.  

 

2 BRIEF HISTORY OF POWER FOR META-ANALYSIS AND DEPENDENT EFFECT 

SIZES  

Until recently, all power approximation techniques for meta-analysis2–5 were restricted by the as-

sumption of independence among effect sizes, i.e., that all studies yield one effect size only. These 

have been shown to perform inadequately when used for approximating power for meta-analysis 
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models handling dependent effect sizes.1 Furthermore, the assumption of independent effect sizes 

is rarely fulfilled in the social and behavioral sciences, where it is common for studies to report 

multiple effect sizes, producing various types of dependency structures in the meta-analysis data. 

Often studies report multiple eligible results for the same sample of participants (e.g., across dif-

ferent time points or types of measurements), creating correlated sample errors, also known as a 

correlated effects dependency structure. Yet, it is also common to find studies that report multiple 

results across non-overlapping samples (e.g., primary and secondary students, respectively), cre-

ating a multi-level or hierarchical effects dependency structure with effect sizes nested in samples 

and samples nested within studies. Albeit the results are deduced from non-overlapping samples, 

the fact the researchers apply the same estimation techniques, implementation strategies, measure-

ment, etc., creates dependency among mean effects coming from the same study. Most often, both 

dependency structures appear simultaneously in social science reviews.  

 Various statistical techniques have been developed to handle dependencies among effect 

sizes. Originally, Hedges & Olkin6 and Raudenbush, Becker, & Kalaian7 suggested using multi-

variate effect sizes models, but these models were/are rarely used in practice8 because they require 

knowledge of the true dependency structures among effect sizes, and such information is rarely 

reported or retrievable from primary studies. A decade ago, methods9–11 based on robust variance 

estimation (RVE) or multi-level modeling (MLMA) were concurrently developed to handle de-

pendency among effect sizes when the true dependency is partly or fully unknown. However, these 

methods are limited to either making correlated or hierarchical assumptions about the dependency 

structure, which in turn restricts the precision of these models when the dependency structure is 

misspecified, i.e., when the model substantially diverges from the true dependency structure(s)12.  

More recently, new statistical methods12, defined as the correlated-hierarchical effects 

(CHE) model, have been developed in which multi-level modeling and RVE are combined while 

simultaneously accounting for the correlated and hierarchical effects dependency structures (there-

fore also defined as the CHE-RVE model). These CHE-RVE models more closely approximate 

the true dependency structures commonly found in meta-analysis applications in the social sci-

ences and slightly increase the statistical power to find small effects in the circumstance when 

multiple dependency structures are inherent in meta-analytical datasets. Since the CHE-RVE 

model most adequately resembles the dependency structures found in social and behavioral science 
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meta-analyses, this paper concentrates on power approximations for the CHE-RVE model only. A 

further advantage of concentrating on the CHE-RVE model is that the common alternative models 

for handling dependent effect sizes can be seen as special cases of this model. For example, the 

MLMA model guarding against misspecification via RVE13 is a special case of the CHE-RVE 

model, assuming that the sample correlation 𝜌 = 0. However, it is important to note that in cases 

when either no within-study heterogeneity or no correlation between effect sizes are expected, the 

CE or the MLMA13 models are the preferable models to be used. Power approximation functions 

for all of the common models for handling dependent effect sizes are available in the POMADE R 

package, and examples of how to use these methods will be incorporated in the accompanying 

vignette to the package. Power approximation formulas were also developed for the CHE and 

MLMA models, not guarding against misspecification via RVE or Satterthwaite degrees of 

freemdom14, but we do not recommend using these models since they do not control the nominal 

Type-I error rate when the number of studies is small (i.e., less than 40 studies).  

 

3 A PRIORI POWER APPROXIMATION FOR THE CHE-RVE MODEL 

To illustrate the conduct of power analysis for meta-analysis of dependent effect sizes, we first 

describe the power approximation for a hypothesis test for an overall average effect based on 

standardized mean differences15 in which the assumed data-generating process follows that of the 

correlated-and-hierarchical effects (CHE) model as described by Pustejovsky and Tipton.12  

The CHE model can be applied for meta-analyzing a set of studies where some or all 

included studies contribute multiple, statistically dependent effect size estimates. Suppose that we 

have a collection of 𝐽 studies to be included in a meta-analysis, where study 𝑗 includes 𝑘𝑗 ≥ 1 

effect size estimates, for 𝑗 = 1, . . , 𝐽. Let 𝑇𝑖𝑗 denote effect size estimate 𝑖 from study 𝑗, with 

corresponding standard error 𝜎𝑖𝑗, for 𝑖 = 1, … , 𝑘𝑗 and 𝑗 = 1, … , 𝐽. For simplicity, we assume that 

the sampling variances are constant within each study, so 𝜎1𝑗
2 = 𝜎2𝑗

2 = ⋯ = 𝜎𝑘𝑗𝑗
2 = 𝜎𝑗

2.  

As usual in meta-analysis, the CHE model makes the assumptions that each 𝑇𝑖𝑗 is an 

unbiased estimator of an effect size parameter 𝜃𝑖𝑗 and that 𝜎𝑖𝑗 is fixed and known. These 

assumptions can be expressed as 
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 𝑇𝑖𝑗 = 𝜃𝑖𝑗 + 𝑒𝑖𝑗 , (1) 

 

where 𝑒𝑖𝑗 = 𝑇𝑖𝑗 − 𝜃𝑖𝑗  is the sampling error, which has expectation zero and variance Var(𝑒𝑖𝑗) =

𝜎𝑗
2. Effect size estimates from different studies are assumed to be uncorrelated, so cor(𝑒ℎ𝑗 , 𝑒𝑖𝑙) =

0 when 𝑗 ≠ 𝑙, but effect size estimates from the same study may be correlated. Because information 

about the sampling correlation between effect sizes is often not available from included studies, 

analysts will typically need to make a more-or-less arbitrary assumption about the degree of 

dependence. With the CHE model, the correlations between sampling errors within a given study 

are all assumed to be equal to a known constant, cor(𝑒ℎ𝑗 , 𝑒𝑖𝑗) = 𝜌, specified by the analyst. This 

feature of the CHE model captures the “correlated effects” structure of the data. 

 The other component of the CHE model captures the “hierarchical effects” structure. Here, 

it is assumed that effect size parameters represent a sample from an underlying population of 

effects that has a hierarchical structure, according to  

 

 𝜃𝑖𝑗 = 𝜇 + 𝑢𝑗 + 𝑣𝑖𝑗 , (2) 

 

where the study-level error term 𝑢𝑗  has mean zero and variance 𝜏2 and the effect size-level error 

term 𝑣𝑖𝑗 has mean zero and variance 𝜔2. The main parameters of the CHE model are the overall 

average effect size 𝜇; the between-study heterogeneity 𝜏2; the within-study heterogeneity 𝜔2; and 

the sampling correlation 𝜌. Under this model, we consider power approximations for tests of the 

null hypothesis 𝐻0: 𝜇 = 𝑑 versus a two-sided alternative, with specified Type-I error level 𝛼.  

 

3.1 Estimation of CHE 

Estimation of the overall average effect size 𝜇 entails first estimating the variance components and 

then using the estimated variance components to take an inverse-variance weighted average of the 

effect size estimates. Let 𝜏̂2 and 𝜔̂2 denote full or restricted maximum likelihood estimators of the 

variance components, which are calculated given an assumed sampling correlation 𝜌. Given values 

of these estimators, the overall average effect size estimate is a weighted average of the study-

specific average effect size estimates, with weights given by 
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𝑤𝑗 =

𝑘𝑗

𝑘𝑗𝜏̂2 + 𝑘𝑗𝜌𝜎𝑗
2 + 𝜔̂2 + (1 − 𝜌)𝜎𝑗

2  

 

(3) 

The overall average effect size is estimated as 

 

 

𝜇̂ =
1

𝑊
∑ 𝑤𝑗𝑇̅𝑗

𝐽

𝑗=1

, (4) 

 

where 𝑇̅𝑗 =
1

𝑘𝑗
∑ 𝑇𝑖𝑗

𝑘𝑗

𝑖=1
 and 𝑊 = ∑ 𝑤𝑗

𝐽
𝑗=1 . If the CHE model is correctly specified, then  

 

 
𝑉𝑎𝑟(𝜇̂) ≈

1

𝑊
. 

(5) 

 

Hypothesis tests or confidence intervals based on (5) will perform properly if the assumptions of 

the CHE model are good approximations to the true data-generating process.  

In light of the lack of information about the sampling correlations between effect size 

estimates, meta-analysts may prefer to use tests based on robust variance estimation (RVE) 

methods, which maintain close-to-correct Type I error calibration even if the CHE model is mis-

specified. With the CHE working model, a robust estimator for the variance of 𝜇̂ is given by 

 

 

𝑉𝑅 =
1

W2
∑

𝑤𝑗
2(𝑇̅𝑗 − 𝜇̂)

2

(1 −
𝑤𝑗

𝑊)
.

𝐽

𝑖=1

 (6) 

 

When the working model is correctly specified, then 𝑉𝑅 is an exactly unbiased estimator of  

𝑉𝑎𝑟(𝜇̂). However, even if the assumptions of the working model do not hold,  𝑉𝑅 remains close 

to unbiased. 

 A robust test of the hypothesis 𝐻0: 𝜇 = 𝑑 is based on the robust Wald test statistic 
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𝑡𝑅 =

𝜇̂ − 𝑑

√𝑉𝑅
. (7) 

 

Tipton (2015) proposed approximating the distribution of 𝑡𝑅 under the null hypothesis by a 

Student-t distribution with 𝜉 degrees of freedom, where 𝜉 is derived based on a Satterthwaite 

approximation under the assumption that the working model is correct. Specifically, the 

Satterthwaite degrees of freedom are calculated as  

 

 

𝜉 = [∑
𝑤𝑗

2

(𝑊 − 𝑤𝑗)
2

𝐽

𝑗=1

−
2

𝑊
∑

𝑤𝑗
3

(𝑊 − 𝑤𝑗)
2

𝐽

𝑗=1

+
1

𝑊2
(∑

𝑤𝑗
2

𝑊 − 𝑤𝑗

𝐽

𝑗=1

)

2

]

−1

. (8) 

 

The robust Wald test rejects the null hypothesis if |𝑡𝑅| > 𝑐𝛼/2,𝜉, where 𝑐𝛼/2,𝜉 is the 𝛼/2 critical 

value from a Student t distribution with 𝜉 degrees of freedom. 

 

3.2 Power approximation 

Vembye, Pustejovsky, and Pigott1 proposed to approximate the power of the Wald robust 

test using a non-central Student-t distribution, with non-centrality parameter given by 

 

 𝜆 = √𝑊(𝜇 − 𝑑) (9) 

 

and degrees of freedom as given in Equation (8). The power of the robust Wald test against a two-

sided alternative is then approximated as 

 

 𝐹𝑡(−𝑐𝛼/2,𝜉|𝜉, 𝜆) + 1 − 𝐹𝑡(𝑐𝛼/2,𝜉|𝜉, 𝜆), (10) 

 

where 𝐹𝑡(𝑥|𝜉, 𝜆) is the cumulative distribution function of a non-central Student-t distribution, and 

𝑐𝛼,𝜉 is the upper 𝛼-level critical value for the central Student-t distribution with 𝜉 degrees of 

freedom, so 𝐹𝑡(𝑐𝛼/2,𝜉|𝜉, 0) = 1 − 𝛼/2. This approximation assumes that the CHE model is 

correctly specified. 
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The power of the test based on CHE-RVE depends on several parameters: the true average 

effect size 𝜇, the between-study variance 𝜏2, the within-study variance 𝜔2, and the assumed 

correlation between sampling errors 𝜌. In the next section, we discuss strategies for making 

assumptions regarding these parameters for purposes of prospective power analysis and sample 

size planning.  

The power of the test also depends on the number of studies in the meta-analysis (J), the 

magnitude of their sampling variances (𝜎1
2, 𝜎2

2, … , 𝜎𝐽
2), and the number of effect sizes contributed 

by each included study (𝑘1, 𝑘2, … , 𝑘𝐽). Prior to completing a systematic review, the sampling 

variances and number of effect sizes per study will not be known precisely. For prospective power 

analysis, Vembye, Pustejovsky, and Pigott1 proposed treating these quantities as random variables 

that follow some distribution. The distribution might be based on empirical data from an initial 

scoping review or a previous meta-analysis on a similar topic, or it might be based on more stylized 

assumptions involving a parametric distribution. With this approach, the power of the test is 

calculated by taking the expected value of Equation (10) over the distribution of sampling 

variances and effect sizes per study. Practically, the expectation is approximated by drawing a 

random sample of J sets of study characteristics (𝜎𝑗
2, 𝑘𝑗) from specified distributions, calculating 

𝜆 and 𝜉 based on the sample of study characteristics, and then calculating power with Equation 

(10). This process is repeated several times, with the expected power level calculated as the overall 

average power across repeated samples. In the POMADE package presented below, this process is 

by default repeated 100 times.  

 

3.3 Sample size planning 

The proposed methods provide a means of approximating the power of a test of the null hypothesis 

𝐻0: 𝜇 = 𝑑 versus a two-sided alternative, given assumptions about the true overall average effect 

size, for a meta-analysis with a specified number of studies. Researchers in the planning stage of 

a meta-analysis might use the methods directly to answer the question “What is the power of this 

test?” However, they might also find it useful to frame the question somewhat differently. Two 

alternative framings are common: one that centers on a target sample size and one that centers on 

minimum meaningful effect sizes.  
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One alternative framing is to pose the question, “How big a sample is needed to achieve a 

specified power level?” To answer this question, we would first specify a desired power level P, 

such as the conventional level of P = 0.8, a minimum effect size of interest (𝜇), and a distribution 

of primary study sample sizes and effect sizes per study. Given these quantities, the number of 

included studies J affects power through the total weight W, which in turn determines the non-

centrality parameter 𝜆,  and through the degrees of freedom 𝜉. Therefore, the target sample size is 

the smallest value of J that satisfies the equation 

 

 𝑃 = 𝐸 [𝐹𝑡 (−𝑐𝛼/2,𝜉|𝜉, √𝑊(𝜇 − 𝑑)) + 1 − 𝐹𝑡 (𝑐𝛼/2,𝜉|𝜉, √𝑊(𝜇 − 𝑑))], (11) 

 

where the expectation is taken over the distribution of primary study sample sizes and effect sizes 

per study. The solution can be found through a direct grid search over a range of possible values 

for J. This feature is integrated in the find_J_* functions presented below.  

Another alternative framing is to pose the question, “How small an average effect size can 

be detected with a given sample size with a specified power level?” To answer this question, we 

would again need to specify a desired power level P and a distribution of primary study sample 

sizes (or variance estimates) and effect sizes per study. We would also need to specify an 

anticipated sample size, J. Given these assumptions, we can find the average effect size 𝜇 that 

satisfies Equation (11). Just as with the previous question, the solution can be found through a 

direct grid search over a range of possible values for 𝜇, and is integrated in the MDES_* functions 

presented below.  

 

4 SUGGESTIONS FOR HOW TO OBTAIN RELEVANT EMPIRICAL PARAMETERS 

AND QUANTITIES NEEDED FOR POWER APPROXIMATION 

As is apparent from the above-presented power approximation formula and procedure, reviewers 

must put forward a range of assumptions to conduct reliable power analyses. This is, of course, a 

clear limitation of the methods. To mitigate this limitation, this section presents guidelines for how 

we think researchers could make plausible and empirically informed assumptions needed to exe-

cute reasonable power approximation. We discuss each parameter and quantity needed for the 

power approximation one by one. In this regard, we do not consider the choice of the 𝛼-level, since 
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we will use the conventional 𝛼 = .05 for all the presented power calculations below. Researchers 

should, of course, change the 𝛼-level based on their research context16. 

4.1 Smallest effect size of practical concern, 𝝁 

The first thing reviewers need to determine to conduct power analysis of meta-analysis is the 

smallest effect of practical concern, 𝜇. Importantly, the determination of the smallest effect size of 

practical importance exclusively hinges on the specific topic of the review literature. Although 

common practice in the social and behavioral sciences, we do not recommend using general effect 

size conventions for small, medium, and large effect sizes such as Cohen’s17 or Hattie’s18 stand-

ards. As others have argued, relying on such decontextualized standards amounts to “characteriz-

ing a child’s height as small, medium, or large, not by reference to the distribution of values for 

children of similar age and gender, but by reference to a distribution for all vertebrate mammals”19.  

The smallest effect size deemed to be of practical importance should be determined in re-

lation to a range of factors such as the cost, complexity, and scalability of the intervention. Fur-

thermore, 𝜇 should be determined by comparing the review intervention(s) to structurally related 

and/or similarly resource-intensive interventions from previous syntheses on similar research top-

ics. Therefore, the smallest effect size of practical importance should ideally be deduced from 

relevant content sources related to the given discipline(s) and topic(s) under review.  

In education, researchers interested in the effects of field experiments/interventions on stu-

dent achievement could profitably apply Kraft’s20 empirical benchmarks for interpreting the small-

est effect size of practical significance of educational interventions on standardized achievement 

outcomes. If reviewers are concerned with grade-specific effect sizes, they can also consult Lipsey 

and colleagues’s19 overview of effect sizes of annual achievement gains. In psychology, reviewers 

could consult Schäfer & Schwartz21 to understand meaningful effect sizes across sub-disciplines.  

 

4.2 Expected number of studies, 𝑱 

A major aim of conducting power analysis for meta-analysis is to gain knowledge about how many 

studies, 𝐽, are needed to find the smallest effect size of practical concern. The number of studies 

expected to be found will often be based on the reviewers’ content-specific knowledge of the given 

review topic. However, reviewers should conduct power analyses across a range of assumptions 

about the expected number of studies to be found to allow for the possibility that the literature 
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search and author solicitation reveal further studies unknown to reviewers. If reviewers are uncer-

tain about the anticipated number of included studies, they could consult previous syntheses and 

reviews on similar research topics and/or from similar disciplines8. In education, reviewers could 

consult Hattie18 and Ahn et al.’s22 overviews of meta-analyses across various topics. Across edu-

cation, psychology, and medicine, reviewers could look into Tipton, Pustejovsky, and Ahmadi8 

for an overview of the average number of studies included in meta-analyses in these disciplines. 

Another source for retrieving empirical meta-analytical data, including J, is the metadat R pack-

age23, in which a large number of datasets of previously conducted meta-analyses are stored.  

  

4.3 Number of effect sizes per study, 𝒌𝒋 

Making assumptions about the number of effect sizes per study, 𝑘𝑗, in Equation (3) can be done in 

various ways. Ideally, reviewers should obtain this information from pilot data of previous reviews 

on related topics. In practice, however, this advice might be difficult to compile because it is still 

not a common practice for systematic reviews and meta-analyses to open source their data. Re-

viewers could, of course, contact previous review authors to gain access to the relevant data. How-

ever, this might be a complicated route since author responses are generally low24. If relevant data 

from previous systematic reviews is not available, the metadat R package23 could again be used. 

Alternatively, reviewers could simulate 𝑘𝑗 around the average 𝑘𝑗 previously found in education, 

psychology, or medicine8,22. We have made this simulation function available in the below-pre-

sented POMADE R package.   

Researchers might be inclined to make the simplifying assumption that all studies in the 

synthesis will include the same number of effect sizes (i.e., a “balanced” design where 𝑘1 = 𝑘2 =

⋯ = 𝑘𝐽 = 𝑘). Except when this assumption is true by design of the review, we recommend against 

using such an assumption because it rarely holds in practice and because, if the true 𝑘𝑗 varies from 

study to study, then the power approximations will systematically overestimate the true power of 

the model.1  

 

4.4 Study sample sizes, 𝑵𝒋, or sampling variances, 𝝈𝒋
𝟐 

To conduct reliable power approximations, reviewers must further put forward assumptions about 

the distribution of sampling variances, 𝜎𝑗
2, in the included studies. Such information might be 
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difficult to retrieve in practice, but we generally suggest that reviewers obtain this information 

either from pilot data of previously conducted reviews on similar research topics or from relevant 

meta-analytical datasets from the metadat package.  

For a given effect size metric, the distribution of sampling variances can often be approxi-

mated from information about the distribution of sample sizes, 𝑁𝑗. For example, for the standard-

ized mean difference effect size metric involving comparison of two groups of independent obser-

vations, the sampling variance of the effect size estimate is approximately 

 

 𝜎𝑗
2 ≈ (

4

𝑁𝑗
+

𝜇2

2(𝑁𝑗 − 2)
)  (12) 

 

where 𝜇2 denotes the anticipated overall average effect size. As with 𝑘𝑗, we do not recommend the 

assumption of  complete balance about 𝑁𝑗  or 𝜎𝑗
2 (i.e., assuming 𝑁1 = 𝑁2 = ⋯ = 𝑁𝐽 = 𝑁 and 𝜎1

2 =

𝜎2
2 = ⋯ = 𝜎𝐽

2 = 𝜎2), because it is rarely experienced in practice, and if the true 𝑁𝑗 and 𝜎𝑗
2 vary, 

the power approximations will overestimate the true power of the model.1 The POMADE package 

also includes functions from which 𝑁𝑗 can be simulated in cases where pilot data is inaccessible. 

 

4.4.1 Clustering  

For the power approximations to work properly, reviewers must account for clustering in the in-

cluded effect sizes25,26. Otherwise, the power approximation will heavily overestimate the true 

power of the given model. Therefore, if clustered studies are expected to be included in the review, 

or the intervention(s) is/are provided at the cluster level27, as is often the case in education28, it is 

pivotal that reviewers either apply effective sample sizes4 (ESS) or sampling variances that both 

include variation from the individual and the cluster levels29 for the power approximation functions 

to work properly. If reviewers have a vector of raw sample sizes, 𝑁𝑗, from clustered studies, these 

can be corrected for one level of clustering by roughly approximating ESS𝑗 via  

 ESS𝑗 =
𝑁𝑗

𝐷𝐸
  (13) 
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where 𝐷𝐸 is the design effect of a two-stage sample given by 

 

 DE = 1 + (𝑛 − 1)𝜌𝐼𝐶𝐶 (14) 

 

with 𝑛 being the average cluster size and 𝜌𝐼𝐶𝐶 the intraclass correlation coefficient (ICC) for the 

cluster level. Relevant compendiums of ICC in education can be found in Hedges & Hedberg30, in 

medicine from Gulliford, Ukoumunne, & Chinn31 and Verma & Lee32, and in psychology from 

Murray & Blitstein33. The effective_sample_sizes() function from the POMADE package can be 

used to correct the raw sample size from cluster studies. If reviewers have pilot data containing a 

vector of sampling variances not including cluster-level variation, these can roughly be adjusted 

for cluster bias by multiplying DE to each sample variance component. The cluster_bias_adjust-

ment() function from the POMADE package can be used for this purpose. Ideally, reviewers should 

strive to obtain pilot data, including sampling variances estimated from multi-level models or clus-

ter robust standard errors or alternatively sampling variance components that have been cluster-

bias corrected as for examples done in Tanner-Smith & Lipsey34 and Dietrichson et al.35  

 

4.5 Between-study variance (study-level variance), 𝝉𝟐 

When making assumptions about a plausible value for the between-study variance, 𝜏2, reviewers 

could, as with the other assumptions, consult previous reviews of similar topics. Alternatively, 

reviewers could follow the guideline suggested by Pigott36 in which 𝜏2 = (1/3)𝜎2 is considered 

as a low degree of heterogeneity, 𝜏2 = 𝜎2 is considered as a moderate degree of heterogeneity, 

and 𝜏2 = 3𝜎2 is considered as a large degree of heterogeneity, where 𝜎2 can be obtained from a 

simplified version of Equation (12):  

𝜎2 ≈ (
4

𝑁
+

𝜇2

2(𝑁 − 2)
) 

Where 𝑁 is the ‘typical’ sample size or effective sample size expected to be found in the given 

literature. Reviewers could consult Fraley & Vazire37 to gain an overview of common study sample 

sizes in psychology journals. To make these calculations accessible to reviewers, we have made 

this procedure available via the tau2_approximation() function from the POMADE package. To 

323



Chapter IV: Power Guidelines and the POMADE R Package 

 
 

recognize the uncertainty of the 𝜏2 estimation, we highly recommend that power approximations 

are conducted across a range of possible values of 𝜏2. To make more intuitive estimates of 𝜏2, it 

can be an advantage to think of the study-level heterogeneity in terms of between-study standard 

deviation (SD) units since these are at the same scale as the mean effect size, 𝜇.   

 

4.6 Within-study variance (effect size level variance), 𝝎 

As with the 𝜏2 estimate, the true within-study variance, 𝜔2, could be obtained from result sections 

of previous reviews of similar research topics or estimated from relevant pilot data with dependent 

effect sizes. Similarly, we suggest that reviewers think of the effect-level heterogeneity in terms 

of within-study SD since it allows for a more intuitive interpretation of this variance component. 

It might also be helpful to think of 𝜔 relative to 𝜏 or vice versa. Say for example that reviewers 

expect one-third of the total true variance to come from within-study heterogeneity, then 𝜔2 =

𝜏2 × 0.5. As with 𝜏2, we think it is good practice to conduct power analyses across a range of 

within-study SD estimates to accommodate the uncertainty of the made assumption and then high-

light the most likely scenario. We elaborate more thoroughly on this procedure in Section 5. 

 

4.7 Assumed sample correlation, 𝝆 

Finally, reviewers have to make assumptions about the expected sampling correlation among out-

comes coming from the same study. This is indeed a tricky part of the power approximation of the 

CHE-RVE model. However, there are certain ways that reviewers can make reliable estimates of 

𝜌. First, reviewers could search for literature in relevant disciplines for common sample correla-

tions among the outcome measures relevant for the review. Second, if raw primary data containing 

multiple eligible outcomes measures are available to the reviewers, 𝜌 could be estimated from this 

data. For example, Vembye, Weiss, & Bhat38 used data from the Project STAR to estimate 𝜌 and 

inform the choice of 𝜌 in their systematic review regarding the effects of collaborative models of 

instruction on student achievement. Third, if reviewers have access to relevant meta-analytical 

pilot data containing studies reporting two outcome measures, then 𝜌 could be obtained by simply 

estimating the correlation between the pairs of effect sizes estimates from those studies that pro-

vide both types of outcomes measures39. Notice, however, that it is recommended, in this case, to 

have at least ten of such studies to be able to obtain a reliable estimate of 𝜌.39 Independently of the 
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used methods to obtain 𝜌, we suggest that reviewers conduct power analyses across a range of 

different assumptions about 𝜌 to inspect the impact of 𝜌 on the power estimate.  

 

5 EMPIRICAL EXAMPLE 

5.1 Replication materials  

All R codes for replicating the below-presented power approximation examples are available on 

the Open Science Framework at https://bit.ly/3uuinTz. For plot generation, the POMADE package 

draws on the ggplot2 R package40. 

 

5.2 Power example of the CHE-RVE model using relevant pilot data 

To illustrate the procedure of power analysis for meta-analysis of dependent effect sizes, suppose 

that we want to conduct a meta-analysis about the effects of increased instruction time by increas-

ing the length of the school day on student achievement. To compute power for this analysis, we 

use pilot data from Vembye, Weiss, & Bhat’s38 (henceforth VWB22) meta-analysis regarding the 

effects of collaborative models of instruction on student achievement. We use VWB22 as pilot 

data because these interventions are related to increased instruction time interventions by repre-

senting true alternatives to increasing the length of the school day. From this systematic review 

and pilot data§, we can find all of the relevant parameters and quantities needed to conduct power 

approximation except for the smallest effect size of practical concern. As previously emphasized, 

the smallest effect size of substantial concern must be deduced from theoretical and practical con-

siderations.   

The VWB22 study found a total of 76 studies eligible for meta-analysis, of which 82% of 

the effect sizes were adjusted for pretest measures, and the study data contain both correlated and 

hierarchical effects dependence structures, supporting the use of the CHE-RVE model. Based on 

this information, we assume that we will find 76 studies ± 10, which might be a realistic expecta-

tion since this number of studies falls within the average number of studies found in education and 

applied psychology8. The VWB22 study further found a substantial amount of heterogeneity with 

variance components (reported as SDs) of 0.25 SD at the effect size level (𝜔) and 0.1 SD at the 

study level (𝜏). VWB22 then estimated 𝜌 ≈ 0.7 from paired effect size estimates for studies both 

 
§ Find data and background material for this study at https://bit.ly/3nhVX3H. 
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reporting STEM and Language Arts outcomes, as suggested by Kirkham et al39. The pilot data of 

VWB22 further makes it possible to obtain a vector of 𝑘𝑗𝑠, with 𝑘̅𝑗 = 3.8, ranging from 1 to 27, 

and a vector of cluster bias corrected 𝜎𝑗
2𝑠 aggregated to the study level. Cluster bias correction 

was needed in this case since 67 out of 76 did not adequately account for nesting of students within 

classes and schools. Furthermore, since both collaborative models of instruction and increased 

instruction time are provided at the class level, it is important to account for clustering in such 

reviews27.  

We define the smallest effect size of practical importance relative to the overall effect size 

of similar cost and resource-intensive interventions such as co-teaching and class size reduction, 

which both appear to have an overall average effect of approximately 0.1 SD38,41. Therefore, we 

here consider an overall average effect size falling below 0.1 to be practical uninteresting com-

pared to these related interventions. With all the needed assumptions in place for power approxi-

mation of the mean effect size of the CHE-RVE model, power can be approximated from the 

power_CHE() function from the POMADE package as presented below. 

# install.package(“devtools”) 
devtools::install_github("MikkelVembye/POMADE") 
 
library(POMADE) 
library(dplyr) 
 
# Check information about pilot data 
?VWB22_pilot 
 
# Make a dataset with two variables, including a vector of the number of  
# effect sizes per study (named kj) and a vector of the sampling variance  
# components (named sigma2j).  

 
dat_kjsigma2j <- select(VWB22_pilot, kj, sigma2j = vg_ms) 

power_CHE( 
   J = 76,                              # Expected number of studies 
   tau2 = 0.1^2,                        # Between-study variance (from VWB22) 
   omega2 = 0.25^2,                     # Within-study variance (from VWB22) 
   beta = 0.1,                          # Smallest ES of practical relevance 
   rho = .7,                            # Sample correlation (from VWB22) 
   var_df = “RVE”,                      # Type of variance and df 
   sigma2_method = "empirical",         # Specifies how sigma2js are obtained 
   pilot_data_kjsigma2 = dat_kjsigma2j, # Pilot data 
   seed = 10052510                      # Set seed to ensure reproducibility 
) 
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From these results, it appears that we would have 76.1% power to find 𝜇 = 0.1 with 76 studies and 

with similar model parameters and study characteristics as found in VWB22.   

 

5.3 Number of Studies Needed to Find the Smallest Effect of Interest 

Another feature embedded in the POMADE package is functions that allow researchers to answer 

questions concerning how many studies are needed to obtain a given effect size considered to be 

of practical interest when the levels of statistical significance and power are prespecified. For the 

CHE-RVE model, this can be investigated via the find_J_CHE() function presented below. 

Find_J_CHE( 
  mu = 0.1, 
  tau2 = 0.1^2, omega2 = 0.25^2, rho = 0.7, 
  alpha = .05, target_power = .8, # Default settings 
  pilot_data_kjsigma2 = dat_kjsigma2j, 
  seed = 10052510 
) 

 
 

From these results, we can see that it would require 84 studies to have 80% power to detect 𝜇 =

0.1 under conditions similar to those presented and found in VWB22. 

 

5.4 Minimum Detectable Effect Size (MDES) 

To answer the questions about the minimum detectable effect size (MDES) with preset levels of 

statistical significance and power as well as fixed study parameters and study characteristics, we 

have developed the MDES functions. For example, the minimum detectable effect size for the 

CHE-RVE model can be estimated from the MDES_CHE() function, as presented below.  

MDES_CHE( 
 J = 76, 
 var_df = “RVE”, 
 tau2 = 0.1^2, omega2 = 0.25^2, rho = 0.7, 
 alpha = .05, target_power = .8, # Default settings  
 pilot_data_kjsigma2 = dat_kjsigma2j, 
 seed = 10052510 
)
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From here, it can be found that the smallest effect size detectable with 80% power under the given 

conditions is 0.105, i.e., very close to the smallest effect size considered to be of practical rele-

vance, clearly underlining the importance of meta-analysis.  

 

5.5 Plotting 

5.5.1 Power 

We acknowledge that it can be rather difficult to guess/approximate the true model parameters and 

sample characteristics, including the final number of studies a priori. Making only one power 

approximation can easily be misleading even if the true model and data structure slightly diverge 

from the yielded data and model assumptions. To maximize the informativeness of the power ap-

proximations, we suggest accommodating the uncertainty of the power approximations by report-

ing or plotting power estimates across a range of possible scenarios. Figure 1 depicts such a plot 

in which power estimates are approximated across varying assumptions of 𝜏, 𝜔, and 𝜌 and 𝐽. In 

the function, reviewers can also specify and illustrate the interval in which they expect the final 

number of studies to fall. This provides a means for reviewers to assess the consequences of the 

assumptions for the power estimate and determine under which scenarios the model power exceeds 

80%. Here, we follow the convention of setting 80% power as the minimum acceptable power 

estimate reasonable for model fitting. This means that the Type I error is considered four times as 

serious as making a TYPE II error, i.e., .20/.05.17 Reviewers can make the power plot (Figure 1) 

by using the power_plot() function in the POMADE package, as presented below. 

# Black and white power plot for the CHE-RVE model with 100 iterations 
power_CHE_RVE_plot <-  

     power_plot( 
     J = seq(50, 100, 10),                 # Range of expected studies to be found 
     tau2 = c(0, 0.05, 0.1, 0.2)^2,        # Between-study var (reported as SD) 
     omega2 = c(0.05, 0.15, 0.25, 0.35)^2, # Within-study var (reported as SD) 
     beta = 0.1,                           # Smallest ES of practical concern 
     rho = c(.2, .4, .7, .9),              # Potential sample correlation estimates 
     model = "CHE",                        # Model specification (Default) 
  var_df = "RVE",         # Var and df specification (Default) 
     pilot_data_kjsigma2 = dat_kjsigma2j,  # Pilot data (VWB22) 
     expected_studies = c(66, 86),         # Expected J-interval (gray shades) 
     seed = 10052510                       # Set seed to ensure reproducibility 
   ) 
 
power_CHE_RVE_plot 
 

The plot can be saved via the ggsave function from the ggplot2 package40. 
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# Save plot 
library(ggplot2) 
 
ggsave(power_CHE_RVE_plot, file = "/file_path/power plot.png ",  
 dpi = 600, height = 7, width = 12) 
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5.5.2 Number of studies (J) 

To investigate the question of how many studies are needed to detect a given effect size of practical 

concern across varying assumptions about 𝜏, 𝜔, and 𝜌 (Figure 2), the find_J_plot() function 

can be used for this purpose, as presented below.   

 

J_plot <-  
  find_J_plot( 
   mu = 0.1, 
   tau2 = c(0, 0.05, 0.1, 0.2)^2, 
   omega2 = c(0.05, 0.15, 0.25, 0.35)^2, 
   rho = c(.2, .4, .7, .9), 
   pilot_data_kjsigma2 = dat_kjsigma2j, 
   seed = 10052510, alpha = .05, target_power = .8 
) 
 
J_plot1 <- J_plot + 
  ggplot2::scale_y_continuous(breaks = seq(30, 150, 20)) 
J_plot1 

 

FIGURE 2. Studies needed to find 𝜇 = 0.1 across varying values of 𝜏2 and 𝜔2 (CHE-RVE) 
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From plots like Figure 2, researchers can, thereby, gain knowledge about the target range of the 

number of studies needed to detect the smallest effect size of practical concern.  

Furthermore, by adding multiple values of 𝜇 to the find_J_plot() function, reviewers can 

also investigate how the number of studies needed changes as a function of the smallest effect size 

of interest. This analysis can be conducted via the codes presented below. Find the output results 

in Figure 3.** 

 
find_J_plot( 
  mu = c(0.05, 0.1, 0.15, 0.2), 
  tau2 = c(0, 0.05, 0.1, 0.2)^2, 
  omega2 = c(0.05, 0.15, 0.25, 0.35)^2, 
  rho = c(.2, .4, .7, .9), 
  pilot_data_kjsigma2 = dat_kjsigma2j, 
  seed = 10052510, alpha = .05, target_power = .8 
 ) 

  

5.5.3 Minimum detectable effect size  

To understand how the minimum detectable effect size varies across the number of included stud-

ies and various model parameters, the MDES_plot() function can be used, as presented below. Find 

the output results in Figure 4.   

 

MDES_plot( 
  J = seq(50, 100, 10), 
  tau2 = c(0, 0.05, 0.1, 0.2)^2, 
  omega2 = c(0.05, 0.15, 0.25, 0.35)^2, 
  rho = c(.2, .4, .7, .9), 
  pilot_data_kjsigma2 = dat_kjsigma2j, 
  seed = 13042022, alpha = .05, target_power = .8, 
  expected_studies = c(66, 86) 
) 

 

Figure 4 provides a means for reviewers to understand what effect sizes can actually be detected 

under a range of different data and model assumptions. From Figure 4, it can, for instance, be seen 

that across all the different scenarios, reviewers can at minimum detect a moderate20 effect, clearly 

justifying meta-analysis.   

 
** Note that running this plot can last more than 30 minutes when 𝜇 < 0.1.  
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5.6 Traffic light power plot 

To further augment and more clearly illustrate the assumptions put forward by the reviewers, we 

suggest that reviewers use what we have coined as a traffic light power plot. Figure 5 shows a 

traffic light power plot in which the likelihood of the reviewers’ assumptions is fleshed out by 

coloring the strips of the facet grid plots with green-colored parameters indicating the expected 

scenario, yellow-colored parameters indicating likely scenarios, and red-colored parameters indi-

cating unlikely scenarios based on previous knowledge of the research topic. This way, it is clear 

to others, including funders, what they can expect in terms of power while also acknowledging the 

uncertainty in these estimates. We suggest approximating no more than four unlikely scenarios to 

keep the yielded assumptions down to a fair number. The traffic light power plot (Figure 5) can be 

made by using the traffic_light_power_plot() function in the POMADE package presented below.  

 

power_CHE_RVE_color_plot <-  
     power_plot( 

     J = seq(50, 100, 10),                  
     tau2 = c(0, 0.05, 0.1, 0.2)^2,         
     omega2 = c(0.05, 0.15, 0.25, 0.35)^2,  
     beta = 0.1,                            
     rho = c(.2, .4, .7, .9),               
     model = "CHE ", 
     var_df = "RVE ",                    
     pilot_data_kjsigma2 = dat_kjsigma2j,   
     expected_studies = c(66, 86),   
     color = TRUE,        # indicate if colored lines and points should be used 
     color_brewer = TRUE, # use the “qual” palatte = 2 (can be omitted) 
     seed = 10052510                        
  ) 
 

power_CHE_RVE_color_plot 

 

# Trafic light power plot  

# Coloring from upper-left strip to lower-right strip 

# Remove below hashtags (#) and mark all codes to save the traffic light power plot 

 

#png("traffic_light_power_plot.png", height = 7,  width = 12,  units = "in", res = 600) 

traffic_light_power_plot( 

   

   power_plot = power_CHE_RVE_color_plot, 

   assumptions = c("unlikely", "likely", "expected", "likely", # Tau assumptions from left to right 

                             "unlikely", "likely", "expected", "unlikely") # Omega assumptions from top to bottom 

) 

#dev.off() 

 

 

  

334



Chapter IV: Power Guidelines and the POMADE R Package 

 
 

 
F

ig
u

re
 5

. 
T

ra
ff

ic
 l

ig
h
t 

p
o
w

er
 p

lo
t 

(C
H

E
-R

V
E

) 

 

 

N
o

te
: 

D
as

h
ed

 l
in

es
 i

n
d

ic
at

e 
p
o

w
er

 o
f 

8
0
 p

er
ce

n
t.

 S
h

ad
ed

 g
ra

y
 a

re
as

 m
ar

k
 t

h
e 

ra
n
g

e 
o
f 

st
u
d

ie
s 

ex
p

ec
te

d
 t

o
 b

e 
fo

u
n

d
 b

y
 t

h
e 

re
v

ie
w

er
s.

 T
h

e 
co

lo
rs

 o
f 

th
e 

st
ri

p
s 

in
d

ic
at

e 
th

e 
re

v
ie

w
er

s’
 e

x
p

ec
ta

ti
o

n
 o

f 
th

e 
li

k
el

ih
o

o
d

 o
f 

th
e 

g
iv

en
 s

ce
n

ar
io

s 
ap

p
ea

ri
n

g
 i

n
 t

h
e 

d
at

as
et

 a
n

d
 a

n
al

y
si

s.
 

335



Chapter IV: Power Guidelines and the POMADE R Package 

 
 

Figure 5 illustrates the power of the CHE-RVE model to find 𝜇 = 0.1 across the assumptions we 

made regarding the effect of increased instruction time on student achievement with green color 

strips indicating our expectation to find 𝜏 = 0.1 and 𝜔 = 0.25 based on previous findings from 

VWB22. 𝜏 and 𝜔 are here reported as SDs so that they can be interpreted in the same unit as 𝜇. 

Furthermore, the gray shades in Figure 5 depict our expectation to find between 66-86 studies in 

the given body of literature, i.e., we expect to find ± 10 studies of what was found in VWB22 and 

which is also the mean number of studies reported in the Review of Education Research and Ap-

plied Psychology journals8. The four lines in the traffic light power plot indicate various assump-

tions about the common sample correlation among effect sizes coming from the same study, 𝜌. 

We assumed 𝜌 = .7, and under the expected (green) scenario in plot (11) in Figure 5, power esti-

mates range from ~70% power with 66 studies to ~80% power with 86 studies. Though power 

does not exceed 80% in all scenarios, we would still suggest proceeding with meta-analysis, since 

only a minor reduction of the within-study variance would yield power above 80%. As can be seen 

in plot (7) in Figure 5, reducing 𝜔 with 0.1 SD would increase power by 10% or more and thus 

produces power above 80% across all numbers of expected studies (𝐽). Therefore, these results 

indicate, in this case, that reviewers should do everything they can to reduce within-study variation, 

for example, by averaging results across subscale and subgroup results irrelevant to the main (sub-

group) analyses of the given review.  

 

6 UTILITY OF PROSPECTIVE POWER ANALYSIS FOR META-ANALYSIS  

One of the major aims of a priori power analysis for meta-analysis is that it can shed light on the 

utility of a planned systematic review. Ultimately, it can inform reviewers and funders if enough 

studies are available to find the smallest effect size of practical/substantial concern and thus 

whether the literature is mature enough for a meta-analysis. In this regard, we must emphasize that 

reviewers should be careful abandoning meta-analysis based on power analyses conducted before 

the full literature search, partly because the power approximations require an extensive amount of 

assumptions that can be empirically error-prone (and thereby misleading) and partly because an 

unexpected number of eligible studies might be revealed to the reviewers during the literature 

search, e.g., through searches of gray literature databases4. As anecdotal evidence to support this 

advice, the first author was a part of a review38 in which the authors only expected to find 20 

eligible studies but ended up finding 128 studies, with approximately 100 studies coming from 
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gray literature searches. Furthermore, the true effect size can potentially diverge strongly from the 

smallest effect size considered to be of practical concern. This will substantially increase the power 

of the model. However, after finalizing the study collection, reviewers might reconsider if meta-

analysis with low power should be conducted based on the detected number of studies. Hereto, it 

is pivotal to stress that if reviewers decide based on the power analysis not to proceed with meta-

analysis—e.g., due to a small number of studies—this does not simply justify narrative synthesis 

as the alternative. In this case, reviewers should carefully look into relevant quantitative alterna-

tives.4,42 Furthermore, power analysis can help inform reviewers about how many studies are 

needed to estimate the smallest effect size of interest but also what the minimum detectable effect 

size is under preset levels of significance and power as well as fixed study characteristics and 

parameters expected to be found in the literature under review. 

In the social and behavioral sciences, it is common to find a large proportion of small stud-

ies that contribute with a large number of effect sizes to the common pool of effect sizes. In such 

cases, prospective power analyses can provide vital information about the impact of including a 

large proportion of such studies on the within-study variance estimation in random-effects models. 

This information can indicate whether reviewers should consider averaging within-study results 

reported across subgroups and/or sub-scales irrelevant to the main analyses of the given review. 

Alone by reducing the number of imprecise effect sizes, reviewers can avoid artificially inflating 

the within-study variance estimation and thereby gain power for their models.   

Finally, one further benefit of conducting a priori power analysis is that it requires the 

reviewers to plan for and think carefully about the likely structure of their meta-analysis dataset 

and the smallest effect size of practical interest. This might naturally yield a deeper understanding 

of a meta-analysis dataset as well as the topic under review and thus provide more fine-grained 

and content-relevant interpretations of the final meta-analysis results. However, it is important to 

note that prospective power analyses should not be compared to the final results since they, by 

definition, do not add any further information to the final results.4   

 

7 CONCLUSION 

In this article, we have developed common guidelines for conducting power analysis for 

meta-analysis of dependent effect sizes and introduced the POMADE package for this purpose. 
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Moreover, we have introduced new graphical tools for illustrating power approximations across a 

range of plausible scenarios. As is apparent from the above illustration, power approximations for 

meta-analysis will be more informative when based on pilot data from previous syntheses on a 

similar research topic. Consequently, this makes demands on the entire meta-analysis community 

to embrace and follow open science and open data43 policies if prospective power analyses should 

become common practice in meta-analysis.  

Since power analysis is exclusively devoted to statistical significance testing and, thus, to 

some degree, based on arbitrarily selected cutpoints for determining statistical significance and 

relevant power, we recommend that reviewers are careful in decisions about conducting a meta-

analysis based on a priori power analyses unless the evidence is decisive. Future research could 

profitably concentrate on developing methods for conducting precision analysis44 for meta-analy-

sis of dependent effect sizes to complement power analysis, i.e., an analysis that aims to approxi-

mate the number of studies needed to obtain a certain width of the confidence interval with a given 

probability. Thereby, reviewers would not need to premise the conduct of meta-analysis on a di-

chotomized choice of either having or not having enough power to find the smallest effect of prac-

tical concern. Nevertheless, we still believe power analysis for meta-analysis of dependent effect 

sizes provides a means for reviewers to make a priori understandings of the given stage and ma-

turity of the literature in point for review, which can provide key guidance for the meta-analysis. 

With this paper, we hope to have provided the needed guidance for the power approximation to be 

widely disseminated among applied reviewers and used as common practice in future systematic 

reviews involving meta-analysis. 
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SUPPORTING INFORMATION  

R codes for replication of all examples provided in this paper are available on the Open Science 

Framework at https://bit.ly/3uuinTz. 
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